New Internet大数据挖掘
温馨提示:5折以下图书主要为出版社尾货,大部分为全新(有塑封/无塑封),个别图书品相8-9成新、切口有划线标记、光盘等附件不全详细品相说明>>
- ISBN:9787121196706
- 装帧:一般胶版纸
- 册数:暂无
- 重量:暂无
- 开本:16开
- 页数:354
- 出版时间:2013-03-01
- 条形码:9787121196706 ; 978-7-121-19670-6
本书特色
“这可能是*通俗易懂的一本数据挖掘书籍” ——互动通邓广梼 pptv陶闯 联合力荐 本书从互联网从业者(如电商、搜索、广告、信息服务等)角度解读大数据概念及挖掘原理,真实呈现大规模数据挖掘在当前环境下的典型应用,而非务虚的泛泛而谈。 大量互联网应用案例,来自作者所在企业及真实采集的实际项目。 读了这本书,除了可以让企业对大数据的了解不再停留在概念上,更可以明确企业在大数据方向上的发力目标。 本书并不会研究高深算法,旨在用通俗易懂的案例展示大数据全貌,厘清基本概念,把握前沿技术,为专业人士进一步深入研究提供入口。 推荐购买:电子商务运营突围(打破运营僵局 全面提升电商数据力)
内容简介
本书全面地介绍了如何使用数据挖掘技术从各种结构的(数据库)或非结构(web)的海量数据中提取和产生业务知识。作者梳理了各种数据挖掘常用算法和信息采集技术,系统地描述了实际应用时如何在互联网日志分析、电子邮件营销、互联网广告和电子商务上进行数据挖掘,着重介绍了数据挖掘的原理和算法在互联网海量数据挖掘中的应用。本书主要特点:全面介绍了数据挖掘和大数据的基本概念和技术;大量采用了实际案例,实用性强;详细介绍了大数据挖掘领域*新的商业应用。
目录
第1章 绪论——从淘金客到矿山主
1.1 大数据时代的“四v”
1.2 什么是大数据挖掘
1.2.1 从数据分析到数据挖掘
1.2.2 web挖掘
1.2.3 大数据挖掘之“大”
1.3 大数据挖掘的国内外发展
1.3.1 数据挖掘的应用发展
1.3.2 数据挖掘研究发展
1.4 本书内容
第2章 一小时了解数据挖掘
2.1 数据挖掘是如何解决问题的
2.1.1 尿不湿和啤酒
2.1.2 target和怀孕预测指数
2.1.3 电子商务网站流量分析
2.2 分类:从人脸识别系统说起
2.2.1 分类算法的应用
2.2.2 数据挖掘分类技术
2.2.3 分类算法的评估
2.3 一切为了商业
2.3.1 什么是商业智能(business intelligence)
2.3.2 数据挖掘的九大定律
2.4 数据挖掘很纠结
2.5 数据挖掘的基本流程
2.5.1 数据挖掘的一般步骤
2.5.2 几个数据挖掘中常用的概念
2.5.3 crisp-dm
2.5.4 数据挖掘的评估
2.5.5 数据挖掘结果的知识表示
2.6 本章相关资源
第3章 数据仓库——数据挖掘的基石
3.1 存放数据的仓库
3.1.1 数据仓库的定义
3.1.2 数据仓库和数据库
3.2 传统的数据仓库介绍
3.3 数据仓库基本结构
3.4 olap联机分析处理
3.5 云存储上的数据仓库
3.5.1 google公司的云架构
3.5.2 开源的分布式系统hadoop
3.5.3 facebook的数据仓库
3.5.4 nosql
3.6 本章相关资源
第4章 数据挖掘算法及原理
4.1 数据挖掘中的算法
4.2 数据挖掘十大经典算法
4.3 分类算法(classification)
4.4 聚类算法(clustering)
4.5 关联算法
4.5.1 关联算法中的概念
4.5.2 关联规则数据挖掘过程
4.5.3 关联规则的分类
4.5.4 apriori算法的执行实例
4.5.5 关联规则挖掘算法的研究与优化
4.6 序列挖掘(sequence mining)
4.7 数据挖掘建模语言pmml
4.8 本章相关资源
第5章 在进行数据挖掘之前
5.1 数据集成
5.2 为何要做数据预处理
5.3 数据预处理
5.3.1 数据清理
5.3.2 数据转换
5.3.3 数据规约
5.4 本章相关资源
第6章 r语言和其他数据挖掘工具
6.1 r语言的历史
6.1.1 r语言的特点
6.1.2 r语言和数据挖掘
6.2 其他数据挖掘工具
6.2.1 matlab
6.2.2 其他商用数据挖掘工具
6.2.3 开源数据挖掘工具weka
6.3 数据挖掘和云
6.4 本章相关资源
第7章 互联网上的日志分析
7.1 网站日志简介
7.2 网站日志处理
7.2.1 web日志预处理
7.2.2 web日志分析和数据挖掘
7.3 邮件日志
7.4 本章相关资源
第8章 数据挖掘和电子邮件
8.1 邮件营销与垃圾邮件过滤
8.2 数据挖掘和邮件营销
8.2.1 如何有效地进行邮件营销
8.2.2 邮件营销案例分享之一
8.2.3 邮件营销案例分享之二
8.2.4 运用数据挖掘rfm模型提高邮件营销效果
8.3 数据挖掘和垃圾邮件过滤
8.3.1 垃圾邮件
8.3.2 垃圾邮件过滤技术
8.3.3 垃圾邮件过滤案例
8.4 本章相关资源
第9章 数据挖掘和互联网广告
9.1 互联网广告
9.2 广告作弊行为
9.3 网站联盟广告
9.4 网站联盟广告上的数据挖掘
9.4.1 数据助力网盟广告
9.4.2 如何应对网盟广告作弊
9.5 本章相关资源
第10章 数据挖掘和电子商务
10.1 中国电子商务现状
10.2 在互联网上卖米
10.3 用数据来掌握客户
10.3.1 客户何时来、从哪来
10.3.2 客户*喜欢哪种商品
10.3.3 竞争与反竞争分析
10.3.4 客户还会买什么
10.3.5 哪些客户是我们需要的
10.4 电子商务案例
10.4.1 电子商务企业案例一
10.4.2 电子商务企业案例二
10.5 本章相关资源
第11章 数据挖掘和web挖掘
11.1 互联网上的个性化–like
11.1.1 like=像
11.1.2 like=喜欢
11.2 web挖掘和sns
11.2.1 sns上的数据价值
11.2.2 sns上的数据关联关系
11.2.3 sns上的用户关系
11.3 数据挖掘和隐私
11.4 本章相关资源
第12章 数据挖掘和移动互联网
12.1 移动互联网的特殊性
12.1.1 锁定用户的数据价值
12.1.2 移动互联网上数据的形式
12.1.3 移动互联网地理位置信息的价值
12.2 数据挖掘和lbs
12.2.1 用pu学习算法做文本挖掘
12.2.2 用相似匹配算法做地点挖掘
12.3 移动互联网数据面临的问题
12.4 本章相关资源
附录1 技术词汇表
附录2 英语参考文献表
附录3 中文参考文献表
附录4 微博
附录5 博客和其他网址
作者简介
谭 磊复旦大学计算机学士,美国杜克大学计算机硕士,在美国微软服务时间超过13年,曾经担任多家公司多个层级技术管理岗位,在搜索、互联网广告、数据挖掘、电子商务等方面有丰富的经验,是互联网技术领域资深专家。
-
乡村振兴新技术:新时代农村短视频编辑技术基础入门
¥12.8¥32.0 -
AI绘画+AI摄影+AI短视频从入门到精通
¥45.5¥79.8 -
企业AI之旅
¥43.5¥79.0 -
机器学习
¥59.4¥108.0 -
基于知识蒸馏的图像去雾技术
¥61.6¥88.0 -
软件设计的哲学(第2版)
¥51.0¥69.8 -
智能算法优化及其应用
¥52.4¥68.0 -
Photoshop图像处理
¥25.5¥49.0 -
R语言医学数据分析实践
¥72.3¥99.0 -
大模型推荐系统:算法原理、代码实战与案例分析
¥62.3¥89.0 -
剪映 从入门到精通
¥25.7¥59.8 -
游戏造梦师----游戏场景开发与设计
¥67.6¥98.0 -
SAR图像处理与检测
¥35.4¥49.8 -
人工智能
¥29.4¥42.0 -
中文版PHOTOSHOP 2024+AI修图入门教程
¥59.3¥79.0 -
WPS办公软件应用
¥25.2¥36.0 -
格拉斯曼流行学习及其在图像集分类中的应用
¥13.7¥28.0 -
轻松上手AIGC:如何更好地向CHATGPT提问
¥40.3¥62.0 -
元宇宙的理想与现实:数字科技大成的赋能与治理逻辑
¥61.6¥88.0 -
云原生安全:攻防与运营实战
¥66.8¥89.0