- ISBN:9787560345130
- 装帧:一般胶版纸
- 册数:暂无
- 重量:暂无
- 开本:16开
- 页数:344
- 出版时间:2014-04-01
- 条形码:9787560345130 ; 978-7-5603-4513-0
本书特色
《半导体物理性能手册(第1卷)(英文版)》系springer手册精选原版系列。《半导体物理性能手册(第1卷)(英文版)》主要包括diamond(c)、silicon(si)、germanium(c)、gray tin(a—sn)、cubic silicon carbide(3c—sic)、hexagonal silicon carbide(2h—,4h—,6h—sic,etc.)、rhombohedral silicon carbide(15r—,21r—,24r—sic,etc.)等内容。
内容简介
足立贞夫所著的《半导体物理性能手册》介绍了各族半导体、化合物半导体的物理性能,包括:StructuralProperties结构特性ThermalProperties热学性质ElasticProperties弹性性质PhononsandLatticeVibronicProperties声子与晶格振动性质CollectiveEffectsandRelatedProperties集体效应及相关性质Energy-BandStructure:Energy-BandGaps能带结构:能带隙Energy-BandStructure:ElectronandHoleEffectiveMasses能带结构:电子和空穴的有效质量ElectronicDeformationPotential电子形变势ElectronAffinityandSchottkyBarrierHeight电子亲和能与肖特基势垒高度OpticalProperties光学性质Elastooptic,Electrooptic,andNonlinearOpticalProperties弹光、电光和非线性光学性质CartierTransportProperties载流子输运性质、适用对象包括材料、微电子学、电子科学与技术等专业的本科生和研究生,以及从事半导体研究的专业人员。
目录
acknowledgments
contents of other volumes
1 diamond (c)
1.1 structural properties
1.1.1 ionicity
1.1.2 elemental isotopic abundance and molecular weight
1.1.3 crystal structure and space group
1.1.4 lattice constant and its related parameters
1.1.5 structural phase transition
1.1.6 cleavage plane
1.2 thermal properties
1.2.1 melting point and its related parameters
1.2.2 specific heat
1.2.3 debye temperature
1.2.4 thermal expansion coefficient
1.2.5 thermal conductivity and diffusivity
1.3 elastic properties
1.3.1 elastic constant
1.3.2 third—order elastic constant
1.3.3 young's modulus, poisson's ratio, and similar
1.3.4 microhardness
1.3.5 sound velocity
1.4 phonons and lattice vibronic properties
1.4.1 phonon dispersion relation
1.4.2 phonon frequency
1.4.3 mode gruneisen parameter
1.4.4 phonon deformation potential
1.5 collective effects and related properties
1.5.1 piezoelectric constant
1.5.2 frohlich coupling constant
1.6 energy—band structure: energy—band gaps
1.6.1 basic properties
1.6.2 e0—gap region
1.6.3 higher—lying direct gap
1.6.4 lowest indirect gap
1.6.5 conduction—valley energy separation
1.6.6 direct—indirect—gap transition pressure
1.7 energy—band structure: electron and hole effective masses
1.7.1 electron effective mass: γ valley
1.7.2 electron effective mass: satellite valley
1.7.3 hole effective mass
1.8 electronic deformation potential
1.8.1 intravalley deformation potential: γ point
1.8.2 intravalley deformation potential: high—symmetry points
1.8.3 intervalley deformation potential
1.9 electron affinity and schottky barrier height
1.9.1 electron affinity
1.9.2 schottky barrier height
1.10 optical properties
1.10.1 summary of optical dispersion relations
1.10.2 the reststrahlen region
1.10.3 at or near the fundamental absorption edge
1.10.4 the interband transition region
1.10.5 free—carrier absorption and related phenomena
1.11 elastooptic, electrooptic, and nonlinear optical properties
1.11.1 elastooptic effect
1.11.2 linear electrooptic constant
1.11.3 quadratic electrooptic constant
1.11.4 franz—keldysh effect
1.11.5 nonlinear optical constant
1.12 carrier transport properties
1.12.1 low—field mobility: electrons
1.12.2 low—field mobility: holes
1.12.3 high—field transport: electrons
1.12.4 high—field transport: holes
1.12.5 minority—carrier transport: electrons in ρ—type materials
1.12.6 minority—carrier transport: holes in n—type materials
1.12.7 impact ionization coefficient
2 silicon (si)
2.1 structural properties
2.1.1 ionicity
2.1.2 elemental isotopic abundance and molecular weight
2.1.3 crystal structure and space group
2.1.4 lattice constant and its related parameters
2.1.5 structural phase transition
2.1.6 cleavage plane
2.2 thermal properties
2.2.1 melting point and its related parameters
2.2.2 specific heat
2.2.3 debye temperature
2.2.4 thermal expansion coefficient
2.2.5 thermal conductivity and diffusivity
2.3 elastic properties
2.3.1 elastic constant
2.3.2 third—order elastic constant
2.3.3 young's modulus, poisson's ratio, and similar
2.3.4 microhardness
2.3.5 sound velocity
2.4 phonons and lattice vibronic properties
2.4.1 phonon dispersion relation
2.4.2 phonon frequency
2.4.3 mode gruneisen parameter
2.4.4 phonon deformation potential
2.5 collective effects and related properties
2.5.1 piezoelectric constant
2.5.2 frohlich coupling constant
2.6 energy—band structure: energy—band gaps
2.6.1 basic properties
2.6.2 e0—gap region
2.6.3 higher—lying direct gap
2.6.4 lowest indirect gap
2.6.5 conduction—valley energy separation
2.6.6 direct—indirect—gap transition pressure
2.7 energy—band structure: electron and hole effective masses
2.7.1 electron effective mass: γ valley
2.7.2 electron effective mass: satellite valley
2.7.3 hole effective mass
2.8 electronic deformation potential
2.8.1 intravalley deformation potential: γ point
2.8.2 intravalley deformation potential: high—symmetry points
2.8.3 intervalley deformation potential
2.9 electron affinity and schottky barrier height
2.9.1 electron affinity
2.9.2 schottky barrier height
2.10 optical properties
2.10.1 summary of optical dispersion relations
2.10.2 the reststrahlen region
2.10.3 at or near the fundamental absorption edge
2.10.4 the interband transition region
2.10.5 free—carrier absorption and related phenomena
2.11 elastooptic, electrooptic, and nonlinear optical properties
2.11.1 elastooptic effect
2.11.2 linear electrooptic constant
2.11.3 quadratic electrooptic constant
2.11.4 franz—keldysh effect
2.11.5 nonlinear optical constant
2.12 carrier transport properties
2.12.1 low—field mobility: electrons
2.12.2 low—field mobility: holes
2.12.3 high—field transport: electrons
2.12.4 high—field transport: holes
2.12.5 minority—carrier transport: electrons in p—type materials
2.12.6 minority—carrier transport: holes in n—type materials
2.12.7 impact ionization coefficient
3 germanium (c)
3.1 structural properties
3.1.1 ionicity
3.1.2 elemental isotopic abundance and molecular weight
3.1.3 crystal structure and space group
3.1.4 lattice constant and its related parameters
3.1.5 structural phase transition
3.1.6 cleavage plane
3.2 thermal properties
3.2.1 melting point and its related parameters
3.2.2 specific heat
3.2.3 debye temperature
3.2.4 thermal expansion coefficient
3.2.5 thermal conductivity and diffusivity
3.3 elastic properties
3.3,1 elastic constant
3.3.2 third—order elastic constant
3.3.3 young's modulus, poisson's ratio, and similar
3.3.4 microhardness
3.3.5 sound velocity
3.4 phonons and lattice vibronic properties
3.4.1 phonon dispersion relation
3.4.2 phonon frequency
3.4.3 mode gruneisen parameter
3.4.4 phonon deformation potential
3.5 collective effects and related properties
3.5.1 piezoelectric constant
3.5.2 frohlich coupling constant
3.6 energy—band structure: energy—band gaps
3.6.1 basic properties
3.6.2 eo—gap region
3.6.3 higher—lying direct gap
3.6.4 lowest indirect gap
3.6.5 conduction—valley energy separation
3.6.6 direct—indirect—gap transition pressure
3.7 energy—band structure: electron and hole effective masses
3.7.1 electron effective mass: f valiey
3.7.2 electron effective mass: satellite valley
3.7.3 hole effective mass
3.8 electronic deformation potential
3.8.1 intravalley deformation potential: γ point
3.8.2 intravalley deformation potential: high—symmetry points
3.8.3 intervalley deformation potential
3.9 electron affinity and schottky barrier height
3.9.1 electron affinity
3.9.2 schottky barrier height
3.10 optical properties
3.10.1 summary of optical dispersion relations
3.10.2 the reststrahlen region
3.10.3 at or near the fundamental absorption edge
3.10.4 the interband transition region
3.10.5 free—carrier absorption and related phenomena
3.11 elastooptic, electrooptic, and nonlinear optical properties
3.11.1 elastooptic effect
3.11.2 linear electrooptic constant
3.11.3 quadratic electrooptic constant
3.11.4 franz—keldysh effect
3.11.5 nonlinear optical constant
3.12 carrier transport properties
3.12.1 low—field mobility: electrons
3.12.2 low—field mobility: holes
3.12.3 high—field transport: electrons
3.12.4 high—field transport: holes
3.12.5 minority—carrier transport: electrons in p—type materials
3.12.6 minority—carrier transport: holes in n—type materials
3.12.7 impact ionization coefficient
4 gray tin (a—sn)
4.1 structural properties
4.1.1 lonicity
4.1.2 elemental isotopic abundance and molecular weight
4.1.3 crystal structure and space group
4.1.4 lattice constant and its related parameters
4.1.5 structural phase transition
4.1.6 cleavage plane
4.2 thermal properties
4.2.1 melting point and its related parameters
4.2.2 specific heat
4.2.3 debye temperature
4.2.4 thermal expansion coefficient
4.2.5 thermal conductivity and diffusivity
4.3 elastic properties
4.3.1 elastic constant
4.3.2 third—order elastic constant
4.3.3 young's modulus, poisson's ratio, and similar
4.3.4 microhardness
4.3.5 sound velocity
4.4 phonons and lattice vibronic properties
4.4.1 phonon dispersion relation
4.4.2 phonon frequency
4.4.3 mode gruneisen parameter
4.4.4 phonon deformation potential
4.5 collective effects and related properties
4.5.1 piezoelectric constant
4.5.2 frohlich coupling constant
4.6 energy—band structure: energy—band gaps
4.6.1 basic properties
4.6.2 eo—gap region
4.6.3 higher—lying direct gap
4.6.4 lowest indirect gap
4.6.5 conduction—valley energy separation
4.6.6 direct—indirect—gap transition pressure
4.7 energy—band structure: electron and hole effective masses
4.7.1 electron effective mass: γ valley
4.7.2 electron effective mass: satellite valley
4.7.3 hole effective mass
4.8 electronic deformation potential
4.8.1 intravalley deformation potential: γ point
4.8.2 intravalley deformation potential: high—symmetry points
4.8.3 intervalley deformation potential
4.9 electron affinity and schottky barrier height
4.9.1 electron affinity
4.9.2 schottky barrier height
4.10 optical properties
4.10.1 summary of optical dispersion relations
4.10.2 the reststrahlen region
4.10.3 at or near the fundamental absorption edge
4.10.4 the interband transition region
4.10.5 free—carrier absorption and related phenomena
4.11 elastooptic, electrooptic, and nonlinear optical properties
4.11.1 elastooptic effect
4.11.2 linear electrooptic constant
4.11.3 quadratic electrooptic constant
4.11.4 franz—keldysh effect
4.11.5 nonlinear optical constant
4.12 carrier transport properties
4.12.1 low—field mobility: electrons
4.12.2 low—field mobility: holes
4.12.3 high—field transport: electrons
4.12.4 high—field transport: holes
4.12.5 minority—carrier transport: electrons in p—type materials
4.12.6 minority—carrier transport: holes in n—type materials
4.12.7 impact ionization coefficient
……
5 cubic silicon carbide (3c—sic)
6 hexagonal silicon carbide (2h—, 4h—, 6h—sic, etc.)
7 rhombohedral silicon carbide (15r—, 21r—, 24r—sic, etc.)
-
数字电子技术
¥36.8¥43.8 -
工业与民用供配电设计手册-(上.下册)-第四版
¥260.0¥388.0 -
进步简史
¥11.7¥30.0 -
突发环境事件应急监测案例研究
¥94.7¥128.0 -
自然灾害情景态势推演规则与风险评估方法
¥49.1¥78.0 -
生命周期评价方法与实践
¥132.7¥168.0 -
矿山安全工程
¥51.3¥59.0 -
变电二次安装工实用技术
¥88.3¥128.0 -
铅铋合金冷却反应堆技术
¥125.6¥159.0 -
作战无人机系统和全球作战无人机
¥141.4¥186.0 -
核动力设备静密封技术
¥211.7¥268.0 -
东北环境史专题研究
¥62.4¥80.0 -
快速认识世界汽车标志与车名
¥32.4¥49.9 -
基于机器学习理论的通信辐射源个体识别
¥52.3¥78.0 -
智能汽车电子与软件:开发方法、系统集成、流程体系与项目管理
¥70.9¥109.0 -
《二手纯电动乘用车鉴定评估技术规范》实施与细则(修订版)
¥36.0¥45.0 -
储能产业政策与典型项目案例解析
¥77.4¥98.0 -
智能金属矿山
¥42.6¥49.0 -
华夏衣裳 汉服制作实例教程
¥104.3¥149.0 -
机械加工基础入门 第3版
¥38.4¥59.0