×
超值优惠券
¥50
100可用 有效期2天

全场图书通用(淘书团除外)

关闭
非参数统计-基于R语言案例分析

非参数统计-基于R语言案例分析

1星价 ¥14.6 (4.9折)
2星价¥14.6 定价¥29.8

温馨提示:5折以下图书主要为出版社尾货,大部分为全新(有塑封/无塑封),个别图书品相8-9成新、切口有划线标记、光盘等附件不全详细品相说明>>

图文详情
  • ISBN:9787566813206
  • 装帧:一般胶版纸
  • 册数:暂无
  • 重量:暂无
  • 开本:16开
  • 页数:216
  • 出版时间:2015-02-01
  • 条形码:9787566813206 ; 978-7-5668-1320-6

本书特色

r语言是gnu系统的一个自由、免费、源代码开放 且功能强大的软件,是一个用于统计计算和统计制图 的**工具,因此开发和使用r语言对我国统计事业 的发展大有裨益。笔者柳向东根据十多年的教学经验 认为,初学者只要了解总体和样本、随机变量及分布 、统计量、检验和估计等统计学的*基本的内容,即 可看懂本书。《非参数统计--基于r语言案例分析》 的重点不在于对公式的推导和演算上,而是在对非参 数思想的理解和对实例的应用以及如何读懂结果和评 价结果上。一旦掌握了r语言在非参数统计研究中的 运用,就会有一种游刃有余的感觉。   本书从问题背景与动机、方法引进、理论基础、 计算机r语言实现以及应用实例等诸多方面来介绍非 参数方法,其内容包括:基于秩检验的符号检验、 wilcoxon检验、kendall相关、列联表、kolmogorov .smirtnov检验、非参数密度估计和回归等。本书在 强调实用性的同时,也突出了应用方法与理论相结合 。   本书可以作为非参数统计的教科书,同时笔者也 希望本书能够成为查询非参数统计中*有用方法的快 捷参考书,读者可通过本书了解如何使用*常用的非 参数方法,并从中找到清晰的说明。  

内容简介

非参数统计是21世纪统计理论的三大发展方向之一。标准的参数方法强烈地依赖于对数据分布的假设,而非参数统计对模型要求甚少,不假定特定的总体分布,因此更加简单、稳健和适用。随着计算工具的发展,非参数统计模型在许多领域中越加广泛的应用。非参数统计不仅是统计类学科的必修课,也是统计应用工作者必须掌握的基本方法和思想。本书从问题背景与动机、方法引进、理论基础、计算机R语言实现、应用实例等诸多方面来介绍非参数方法,其内容包括:基于秩检验的符号检验、Wilcoxon检验、Kendal相关、列联表、Kolmogorov-Smirnov检验、非参数密度估计和回归等。本书强调实用性的同时,也突出了应用方法与理论相结合。本书能作为非参数统计统计的教科书,同时也希望能够成为查询非参数统计中*有用方法的快捷参考书,用以了解如何实用*常用的非参数方法,并从中找到清晰的说明。

目录

前言1  统计推断  1.1  总体、样本与统计量    1.1.1  总体    1.1.2  样本    1.1.3  目标总体与样本总体    1.1.4  随机样本    1.1.5  多元随机变量    1.1.6  度量尺度    1.1.7  统计量    1.1.8  顺序统计量与秩  1.2  估计    1.2.1  经验分布函数    1.2.2  估计量    1.2.3  标准误差    1.2.4  无偏估计量     1.2.5  渐近置信区间    1.2.6  自助法     1.2.7  一般参数估计    1.2.8  生存函数    1.2.9  kaplan—meier估计  1.3  假设检验    1.3.1  临界域    1.3.2  错误类型    1.3.3  显著性水平    1.3.4  零分布    1.3.5  功效    1.3.6  检验的p值    1.3.7  计算机辅助    1.3.8  假设检验的性质    1.3.9  无偏检验    1.3.10  相合检验    1.3.11  相对效率    1.3.12  渐近相对效率    1.3.13  保守检验  1.4  非参数统计评述    1.4.1  使用优良方法    1.4.2  参数方法 .    1.4.3  稳健方法    1.4.4  非参数方法    1.4.5  渐近分布自由    1.4.6  非参数的定义  复习题  思考题2  符号检验  2.1  二项检验与p值的估计    2.1.1  二项检验     2.1.2  概率或总体比例的置信区间  2.2  分位数检验与x2 的估计    2.2.1  分位数检验     2.2.2  分位数的置信区间  2.3  符号检验的一些变形    2.3.1  改变显著性检验    2.3.2 cox—stuart趋势性检验    案例分析    r语言代码示例  复习题3  关于秩的位置、尺度和相关性检验  3.1  单样本模型    3.1.1  wi.1eoxon符号秩模型    3.1.2  正态记分模型    3.1.3  游程检验模型  3.2  两样本模型    3.2.1  brown-moodr中位数检验     3.2.2  wileoxon秩和检验    3.2.3  两样本尺度参数的检验  3.3  多样本模型    3.3.1  多个独立样本    3.3.2  多个相关样本    3.3.3  平衡的不完全区组设计    3.3.4  多样本尺度参数的检验  3.4  秩相关性与非参数线性回归    3.4.1  spearman秩相关检验     3.4.2  kendall г相关检验    3.4.3  theil回归方法     3.4.4  *小中位数二乘回归方法    案例分析  复习题4低维和高维列联表    4.1低维列联表    4.1.1 2×2列联表    4.1.2 r×c列联表    4.1.3中位数检验    4.1.4相依性度量    4.2高维列联表及应用    案例分析    复习题5 kolmogorov-smimo~r型统计量与分布检验  5.1  kolmogorov单样本分布检验    5.1.1  kolmogorov拟合优度检验    5.1.2  f*(x)为离散时,一种计算精确p值的方法    5.1.3  总体分布函数的置信界  5.2  分布族的拟合优度检验    5.2.1  i,illiefors正态性检验    5.2.2  指数分布的lilliefors检验    5.2.3  shapiro—wilk正态性检验  5.3  两组独立样本的检验    5.3.1  smirnov检验    5.3.2  cramer一yon mises两样本检验  思考题  复习题6  非参数回归    6.1  非参数密度估计    6.1.1  直方图    6.1.2  核密度估计    6.1.3  k近邻估计    6.2  非参数回归    6.2.1  核估计回归    6.2.2  k近邻权回归  6.3  其他非参数回归方法简介    6.3.1  局部多项式估计    6.3.2  局部加权描点光滑    6.3.3  样条光滑回归    6.3.4  friedman超光滑回归    6.3.5  傅里叶级数光滑估计    6.3.6  小波估计    案例分析  复习题  附录(本章代码)7  r语言  7.1  r语言简介  7.2  r语言和统计  7.3  r语言的启动和退出   7.4  r语言的帮助系统  7.5  r语言的算术运算  7.6  向量的基本操作  7.7  向量的运算  7.8  向量的逻辑运算  7.9  复杂的数据结构    7.9.1  矩阵的操作和运算    7.9.2  数组    7.9.3  数据框架    7.9.4  列表  7.10  数据处理    7.10.1  读入数据    7.10.2  编写函数    7.10.3  常用统计函数  7.11  r语言的图形功能    7.11.1  基本命令    7.11.2  多图显示    7.11.3  直方图    7.11.4  正态概率qq图    7.11.5箱  尾图  复习题参考文献
展开全部

作者简介

柳向东,湖南浏阳人,博士、副教授、系党总支书记、硕士研究生导师。教授“非参数统计”等课程,发表学术论文20余篇,其中多篇被SCI和EI收录,获教育部留学回国人员科研启动基金,主持国家自然科学基金和教育部人文社科基金各1项,荣获校级优秀教师等称号,获2项国家专利,曾访学美国密苏里大学1年。

预估到手价 ×

预估到手价是按参与促销活动、以最优惠的购买方案计算出的价格(不含优惠券部分),仅供参考,未必等同于实际到手价。

确定
快速
导航