TensorFlow 实战Google深度学习框架(第2版)
温馨提示:5折以下图书主要为出版社尾货,大部分为全新(有塑封/无塑封),个别图书品相8-9成新、切口有划线标记、光盘等附件不全详细品相说明>>
- ISBN:9787121330667
- 装帧:一般胶版纸
- 册数:暂无
- 重量:暂无
- 开本:16开
- 页数:348
- 出版时间:2018-02-01
- 条形码:9787121330667 ; 978-7-121-33066-7
本书特色
TensorFlow是谷歌2015年开源的主流深度学习框架,目前已得到广泛应用。本书为TensorFlow入门参考书,旨在帮助读者以快速、有效的方式上手TensorFlow和深度学习。书中省略了烦琐的数学模型推导,从实际应用问题出发,通过具体的TensorFlow示例介绍如何使用深度学习解决实际问题。书中包含深度学习的入门知识和大量实践经验,是走进这个前沿、热门的人工智能领域的优选参考书。第2版将书中所有示例代码从TensorFlow 0.9.0升级到了TensorFlow 1.4.0。在升级API的同时,第2版也补充了更多只有TensorFlow 1.4.0才支持的功能。另外,第2版还新增两章分别介绍TensorFlow高层封装和深度学习在自然语言领域应用的内容。本书适用于想要使用深度学习或TensorFlow的数据科学家、工程师,希望了解深度学习的大数据平台工程师,对人工智能、深度学习感兴趣的计算机相关从业人员及在校学生等。
内容简介
√ 前谷歌专家、现Tensorflow创业新贵,新版力邀现谷歌专家加盟,共话新版核心技术与前沿案例。 √ 本书前版作为业界首著伴随Tensorflow火遍全球,旨在面向生产|商业场景,彻底贯通原理|实践。 √ 深入原理|走访主创|结合真实项目,AI、ML团队争相赞誉力荐,与Tensorflow一道成为事实标准。 √ 代码全面升级为1.4 版,重点关注新版功能,增设专题论述TF高层封装和深度学习自然语言应用。
目录
1.1 人工智能、机器学习与深度学习 2
1.2 深度学习的发展历程 6
1.3 深度学习的应用 10
1.3.1 计算机视觉 10
1.3.2 语音识别 13
1.3.3 自然语言处理 14
1.3.4 人机博弈 17
1.4 深度学习工具介绍和对比 19
小结 23
第2章 TensorFlow环境搭建 25
2.1 TensorFlow的主要依赖包 25
2.1.1 Protocol Buffer 25
2.1.2 Bazel 27
2.2 TensorFlow安装 29
2.2.1 使用Docker安装 30
2.2.2 使用pip安装 31
2.2.3 从源代码编译安装 32
2.3 TensorFlow测试样例 37
小结 38
第3章 TensorFlow入门 39
3.1 TensorFlow计算模型——计算图 39
3.1.1 计算图的概念 39
3.1.2 计算图的使用 40
3.2 TensorFlow数据模型——张量 42
3.2.1 张量的概念 42
3.2.2 张量的使用 44
3.3 TensorFlow运行模型——会话 45
3.4 TensorFlow实现神经网络 47
3.4.1 TensorFlow游乐场及神经网络简介 47
3.4.2 前向传播算法简介 50
3.4.3 神经网络参数与TensorFlow变量 54
3.4.4 通过TensorFlow训练神经网络模型 58
3.4.5 完整神经网络样例程序 62
小结 64
第4章 深层神经网络 66
4.1 深度学习与深层神经网络 66
4.1.1 线性模型的局限性 67
4.1.2 激活函数实现去线性化 70
4.1.3 多层网络解决异或运算 73
4.2 损失函数定义 74
4.2.1 经典损失函数 75
4.2.2 自定义损失函数 79
4.3 神经网络优化算法 81
4.4 神经网络进一步优化 85
4.4.1 学习率的设置 85
4.4.2 过拟合问题 87
4.4.3 滑动平均模型 91
小结 92
第5章 MNIST数字识别问题 94
5.1 MNIST数据处理 94
5.2 神经网络模型训练及不同模型结果对比 97
5.2.1 TensorFlow训练神经网络 97
5.2.2 使用验证数据集判断模型效果 102
5.2.3 不同模型效果比较 103
5.3 变量管理 107
5.4 TensorFlow模型持久化 112
5.4.1 持久化代码实现 112
5.4.2 持久化原理及数据格式 117
5.5 TensorFlow*佳实践样例程序 126
小结 132
第6章 图像识别与卷积神经网络 134
6.1 图像识别问题简介及经典数据集 135
6.2 卷积神经网络简介 139
6.3 卷积神经网络常用结构 142
6.3.1 卷积层 142
6.3.2 池化层 147
6.4 经典卷积网络模型 149
6.4.1 LeNet-5模型 150
6.4.2 Inception-v3模型 156
6.5 卷积神经网络迁移学习 160
6.5.1 迁移学习介绍 160
6.5.2 TensorFlow实现迁移学习 161
小结 168
第7章 图像数据处理 170
7.1 TFRecord输入数据格式 170
7.1.1 TFRecord格式介绍 171
7.1.2 TFRecord样例程序 171
7.2 图像数据处理 173
7.2.1 TensorFlow图像处理函数 174
7.2.2 图像预处理完整样例 183
7.3 多线程输入数据处理框架 185
7.3.1 队列与多线程 186
7.3.2 输入文件队列 190
7.3.3 组合训练数据(batching) 193
7.3.4 输入数据处理框架 196
7.4 数据集(Dataset) 199
7.4.1 数据集的基本使用方法 199
7.4.2 数据集的高层操作 202
小结 207
第8章 循环神经网络 208
8.1 循环神经网络简介 208
8.2 长短时记忆网络(LSTM)结构 214
8.3 循环神经网络的变种 218
8.3.1 双向循环神经网络和深层循环神经网络 218
8.3.2 循环神经网络的dropout 221
8.4 循环神经网络样例应用 222
小结 226
第9章 自然语言处理 227
9.1 语言模型的背景知识 227
9.1.1 语言模型简介 227
9.1.2 语言模型的评价方法 229
9.2 神经语言模型 232
9.2.1 PTB数据集的预处理 233
9.2.2 PTB数据的batching方法 236
9.2.3 基于循环神经网络的神经语言模型 238
9.3 神经网络机器翻译 244
9.3.1 机器翻译背景与Seq2Seq模型介绍 245
9.3.2 机器翻译文本数据的预处理 246
9.3.3 Seq2Seq模型的代码实现 250
9.3.4 注意力机制 257
小结 261
第10章 TensorFlow高层封装 262
10.1 TensorFlow高层封装总览 262
10.2 Keras介绍 267
10.2.1 Keras基本用法 267
10.2.2 Keras高级用法 272
10.3 Estimator介绍 277
10.3.1 Estimator基本用法 278
10.3.2 Estimator自定义模型 280
10.3.3 使用数据集(Dataset)作为Estimator输入 284
小结 286
第11章 TensorBoard可视化 287
11.1 TensorBoard简介 287
11.2 TensorFlow计算图可视化 289
11.2.1 命名空间与TensorBoard图上节点 290
11.2.2 节点信息 297
11.3 监控指标可视化 301
11.4 高维向量可视化 309
小结 317
第12章 TensorFlow计算加速 318
12.1 TensorFlow使用GPU 318
12.2 深度学习训练并行模式 324
12.3 多GPU并行 327
12.4 分布式TensorFlow 334
12.4.1 分布式TensorFlow原理 334
12.4.2 分布式TensorFlow模型训练 338
小结 348
相关资料
终于等到这本TensorFlow技术书的升级。这本书和其他介绍技术框架的书不太一样,它从深度学习简介开始,一点一点深入到TensorFlow的使用,同时把算法和框架的使用结合起来,让读者
在了解框架的同时,还能够更深入地了解深度学习算法的原理。示例代码注释详尽,语言风格通俗易懂,算法介绍由浅入深,可谓是难得的好书。——冯博 TalkingData 数据科学家
本书由浅入深,介绍了TensorFlow在典型场景中的应用实践,提供分布式训练等大量实例,是TensorFlow开发者和深度学习爱好者的优选参考资料。
——陈迪豪 第四范式先知平台架构师
Google的每一次技术发布,都会成为万众瞩目的焦点。TensorFlow从开源到现在,已经吸引了众多开发者、机器学习爱好者、科研和企业用户贡献代码,新功能如雨后春笋般出现,迭代周期
之短,响应速度之快,业界少有。其独特的张量(Tensor)和图(Graph)构建算法模型的方式让人耳目一新,给模型设计者更大的自由度。TensorFlow的入门学习资源也琳琅满目,让人无从选择,《TensorFlow:实战Google深度学习框架(第2版)》这本书,从基本概念到完整模型,从抽象理论到工程实现,涵盖了图像、文本领域的常用方法,以及可视化和分布式计算等高级主
题,相信开卷之后大有裨益,助力开发者完成产品级应用落地。
——赵永科 阿里云资深研发工程师
Google的深度学习开源方案TensorFlow近年来在人工智能领域被广泛使用并大放异彩。本书不仅对深度神经网络的底层技术做了讲解,还提供了TensorFlow在图像处理、语义理解、性能加速、数据可视化等方面的实战案例,浓缩了大量开发知识和实践经验,是一本非常有参考价值的TensorFlow中文著作。
——陈运文 达观数据董事长兼CEO
TensorFlow作为主流的深度学习框架,已经被积极地应用于各类商业产品中,成为机器学习工程师必须了解的知识。本书不仅介绍了深度学习的发展及应用,还提供了环境搭建教程及实际问题的解决技巧。本书避免了晦涩数学公式所带来的负担,通俗易懂。建议想要入门并了解深度学习理论和应用的朋友们阅读!
——赵越 普华永道高级数据科学家
本书作者以美国知名大学读研的学识、Google全职算法专家的经验,从0到1系统地讲解了深度学习以及非常受欢迎的深度学习框架TensorFlow的相关知识,提供了多种场景的应用实例,是深度学习应用领域的代表性作品。
——向光 北京数问科技有限公司创始人、CEO,Carnegie Mellon University计算机博士
这是一本关于TensorFlow实战的书,通俗易懂,深入浅出,强烈建议大家持卷品读!
——唐建 蒙特利尔大学深度学习算法中心助理教授
作者简介
郑泽宇,2011年获北京大学计算机学士学位,2013年获卡内基梅隆大学计算机硕士学位,前谷歌高级工程师,现为才云科技(Caicloud.io)联合创始人、首席大数据科学家。针对分布式TensorFlow上手难、管理难、监控难、上线难等问题,带领团队成功开发国内首个成熟的分布式TensorFlow深度学习平台,在机器学习、人工智能领域有着丰富的经验。梁博文,谷歌工程师。2011年获北京大学计算机学士学位,2013年获哥伦比亚大学计算机硕士学位,同年加入谷歌翻译组,参与并领导了多个项目,负责了3个语言的翻译模型的研发工作,在自然语言处理方面有丰富经验,在统计翻译模型、神经网络翻译模型、语料数据清洗等方面均有深入研究。
-
有限与无限的游戏:一个哲学家眼中的竞技世界
¥37.4¥68.0 -
全图解零基础word excel ppt 应用教程
¥12.0¥48.0 -
机器学习
¥59.4¥108.0 -
深度学习的数学
¥43.5¥69.0 -
智能硬件项目教程:基于ARDUINO(第2版)
¥37.7¥65.0 -
硅谷之火-人与计算机的未来
¥14.3¥39.8 -
元启发式算法与背包问题研究
¥38.2¥49.0 -
AI虚拟数字人:商业模式+形象创建+视频直播+案例应用
¥62.9¥89.8 -
UNIX环境高级编程(第3版)
¥164.9¥229.0 -
剪映AI
¥52.8¥88.0 -
深度学习高手笔记 卷2:经典应用
¥90.9¥129.8 -
纹样之美:中国传统经典纹样速查手册
¥77.4¥109.0 -
UG NX 12.0数控编程
¥24.8¥45.0 -
MATLAB计算机视觉与深度学习实战(第2版)
¥90.9¥128.0 -
界面交互设计理论研究
¥30.8¥56.0 -
UN NX 12.0多轴数控编程案例教程
¥25.8¥38.0 -
微机组装与系统维护技术教程(第二版)
¥37.8¥43.0 -
明解C语言:实践篇
¥62.9¥89.8 -
Linux服务器架设实战(Linux典藏大系)
¥84.5¥119.0 -
PREMIERE PRO 2023全面精通:视频剪辑+颜色调整+转场特效+字幕制作+案例实战
¥69.3¥99.0