图文详情
- ISBN:9787121252501
- 装帧:一般胶版纸
- 册数:暂无
- 重量:暂无
- 开本:其他
- 页数:232
- 出版时间:2019-04-01
- 条形码:9787121252501 ; 978-7-121-25250-1
本书特色
本书系统地介绍了纯距离目标运动分析的理论及应用等相关知识。全书共分10章,系统讨论了纯距离目标运动分析涉及的可观测性分析、目标定位与跟踪算法、单站机动航路优化、静止多站站址布局优化等基础问题,并对纯距离系统在水下声学传感器中的应用进行了论述。
内容简介
本书系统地介绍了纯距离目标运动分析的理论及应用等相关知识。全书共分10章,系统讨论了纯距离目标运动分析涉及的可观测性分析、目标定位与跟踪算法、单站机动航路优化、静止多站站址布局优化等基础问题,并对纯距离系统在水下声学传感器中的应用进行了论述。
目录
第1 章 绪论 ················································································ 1
1.1 纯距离目标运动分析基本概念 ·············································· 1
1.2 纯距离目标运动分析的研究现状 ··········································· 4
1.2.1 可观测性分析的研究现状 ············································ 4
1.2.2 目标定位与跟踪算法的研究现状 ··································· 6
1.2.3 单观测站机动航路优化的研究现状 ································ 7
1.2.4 静止多观测站站址布局优化的研究现状 ·························· 7
1.2.5 基于纯距离的水下声学传感器网络节点自定位算法的研究现状 ························································ 8
1.2.6 基于纯距离的水下声学传感器网络目标跟踪算法的研究现状 ·································································
1.3 纯距离目标运动分析的研究热点 ··········································· 9
1.4 本书的组织结构 ······························································· 10
第2 章 单站纯距离系统可观测性分析 ·············································· 12
2.1 引言 ·············································································· 12
2.2 系统数学描述 ·································································· 13
2.2.1 直角坐标系下的系统数学描述 ····································· 13
2.2.2 极坐标系下的系统数学描述 ········································ 14
2.2.3 修正极坐标系下的系统数学描述 ·································· 15
2.3 系统可观测性定义 ···························································· 16
2.4 系统可观测分析 ······························································· 17
2.4.1 观测站静止、目标静止时的系统可观测性分析 ················ 18
2.4.2 观测站静止、目标匀速直线运动时的系统可观测性分析 ···· 18
2.4.3 观测站静止、目标匀加速直线运动时的系统可观测性分析 ··· 21
2.4.4 观测站匀速直线运动、目标静止时的系统可观测性分析 ···· 21
2.4.5 观测站匀速直线运动、目标匀速直线运动时的系统可观测性分析 ·························································· 24
2.4.6 观测站匀速直线运动、目标匀加速直线运动时的系统可观测性分析 ·························································· 25
2.4.7 观测站匀加速直线运动、目标静止时的可观测性分析 ······· 25
2.4.8 观测站匀加速运动、目标匀速直线运动时的可观测分析 ···· 26
2.4.9 匀加速运动观测站、匀加速直线运动目标的可观测分析 ···· 27
2.4.10 其他结论 ······························································ 31
2.5 单站纯距离系统与单站纯方位系统可观测性比较 ······················· 32
第3 章 单站纯距离系统目标定位与跟踪算法研究 ······························· 33
3.1 引言 ·············································································· 33
3.2 系统数学模型 ·································································· 34
3.3 基于*小二乘原理的目标参数估计算法 ·································· 36
3.3.1 递推格式的目标参数估计算法 ····································· 36
3.3.2 基于全局收敛策略的目标参数估计算法 ························· 40
3.4 基于极大似然原理的目标参数估计算法 ·································· 48
3.4.1 单站纯距离系统的极大似然估计 ·································· 48
3.4.2 基于全局收敛策略的改进算法 ····································· 51
3.4.3 仿真试验及分析 ······················································· 52
3.5 UKF 算法的基本原理 ························································· 57
3.5.1 UT 变换 ································································· 57
3.5.2 标准UKF 算法 ························································ 58
3.5.3 迭代UKF 算法 ························································ 59
3.5.4 仿真试验及分析 ······················································· 60
3.6 自适应迭代UKF 算法 ························································ 63
3.6.1 自适应迭代UKF 算法步骤 ········································· 63
3.6.2 仿真试验及分析 ······················································· 64
第4 章 单站机动航路优化研究 ······················································· 70
4.1 引言 ·············································································· 70
4.2 观测站匀速直线一次转向机动时的可观测度分析 ······················ 71
4.2.1 可观测度的定义 ······················································· 71
4.2.2 仿真试验及分析 ······················································· 72
4.3 单站纯距离测量模型的CRLB ·············································· 74
4.3.1 定位与跟踪误差下限 ················································· 74
4.3.2 单站纯距离测量模型CRLB 计算 ·································· 76
4.4 观测站机动航路优化研究 ··················································· 78
4.4.1 航路优化问题的提出 ················································· 78
4.4.2 匀速直线一次转向机动优化航路 ·································· 79
4.4.3 匀速转弯机动优化航路 ·············································· 82
4.5 航路优化的方法 ······························································· 85
第5 章 多站纯距离系统可观测性分析 ·············································· 87
5.1 引言 ····················
1.1 纯距离目标运动分析基本概念 ·············································· 1
1.2 纯距离目标运动分析的研究现状 ··········································· 4
1.2.1 可观测性分析的研究现状 ············································ 4
1.2.2 目标定位与跟踪算法的研究现状 ··································· 6
1.2.3 单观测站机动航路优化的研究现状 ································ 7
1.2.4 静止多观测站站址布局优化的研究现状 ·························· 7
1.2.5 基于纯距离的水下声学传感器网络节点自定位算法的研究现状 ························································ 8
1.2.6 基于纯距离的水下声学传感器网络目标跟踪算法的研究现状 ·································································
1.3 纯距离目标运动分析的研究热点 ··········································· 9
1.4 本书的组织结构 ······························································· 10
第2 章 单站纯距离系统可观测性分析 ·············································· 12
2.1 引言 ·············································································· 12
2.2 系统数学描述 ·································································· 13
2.2.1 直角坐标系下的系统数学描述 ····································· 13
2.2.2 极坐标系下的系统数学描述 ········································ 14
2.2.3 修正极坐标系下的系统数学描述 ·································· 15
2.3 系统可观测性定义 ···························································· 16
2.4 系统可观测分析 ······························································· 17
2.4.1 观测站静止、目标静止时的系统可观测性分析 ················ 18
2.4.2 观测站静止、目标匀速直线运动时的系统可观测性分析 ···· 18
2.4.3 观测站静止、目标匀加速直线运动时的系统可观测性分析 ··· 21
2.4.4 观测站匀速直线运动、目标静止时的系统可观测性分析 ···· 21
2.4.5 观测站匀速直线运动、目标匀速直线运动时的系统可观测性分析 ·························································· 24
2.4.6 观测站匀速直线运动、目标匀加速直线运动时的系统可观测性分析 ·························································· 25
2.4.7 观测站匀加速直线运动、目标静止时的可观测性分析 ······· 25
2.4.8 观测站匀加速运动、目标匀速直线运动时的可观测分析 ···· 26
2.4.9 匀加速运动观测站、匀加速直线运动目标的可观测分析 ···· 27
2.4.10 其他结论 ······························································ 31
2.5 单站纯距离系统与单站纯方位系统可观测性比较 ······················· 32
第3 章 单站纯距离系统目标定位与跟踪算法研究 ······························· 33
3.1 引言 ·············································································· 33
3.2 系统数学模型 ·································································· 34
3.3 基于*小二乘原理的目标参数估计算法 ·································· 36
3.3.1 递推格式的目标参数估计算法 ····································· 36
3.3.2 基于全局收敛策略的目标参数估计算法 ························· 40
3.4 基于极大似然原理的目标参数估计算法 ·································· 48
3.4.1 单站纯距离系统的极大似然估计 ·································· 48
3.4.2 基于全局收敛策略的改进算法 ····································· 51
3.4.3 仿真试验及分析 ······················································· 52
3.5 UKF 算法的基本原理 ························································· 57
3.5.1 UT 变换 ································································· 57
3.5.2 标准UKF 算法 ························································ 58
3.5.3 迭代UKF 算法 ························································ 59
3.5.4 仿真试验及分析 ······················································· 60
3.6 自适应迭代UKF 算法 ························································ 63
3.6.1 自适应迭代UKF 算法步骤 ········································· 63
3.6.2 仿真试验及分析 ······················································· 64
第4 章 单站机动航路优化研究 ······················································· 70
4.1 引言 ·············································································· 70
4.2 观测站匀速直线一次转向机动时的可观测度分析 ······················ 71
4.2.1 可观测度的定义 ······················································· 71
4.2.2 仿真试验及分析 ······················································· 72
4.3 单站纯距离测量模型的CRLB ·············································· 74
4.3.1 定位与跟踪误差下限 ················································· 74
4.3.2 单站纯距离测量模型CRLB 计算 ·································· 76
4.4 观测站机动航路优化研究 ··················································· 78
4.4.1 航路优化问题的提出 ················································· 78
4.4.2 匀速直线一次转向机动优化航路 ·································· 79
4.4.3 匀速转弯机动优化航路 ·············································· 82
4.5 航路优化的方法 ······························································· 85
第5 章 多站纯距离系统可观测性分析 ·············································· 87
5.1 引言 ····················
展开全部
作者简介
王璐,女,博士,主要研究方向为目标运动分析、系统建模与仿真,发表纯距离目标运动分析领域研究论文10余篇,参与完成科研项目6项,编写教材3部。
本类五星书
本类畅销
-
数字电子技术
¥36.8¥43.8 -
进步简史
¥11.7¥30.0 -
突发环境事件应急监测案例研究
¥94.7¥128.0 -
自然灾害情景态势推演规则与风险评估方法
¥49.1¥78.0 -
生命周期评价方法与实践
¥132.7¥168.0 -
矿山安全工程
¥51.3¥59.0 -
变电二次安装工实用技术
¥88.3¥128.0 -
铅铋合金冷却反应堆技术
¥125.6¥159.0 -
核动力设备静密封技术
¥211.7¥268.0 -
东北环境史专题研究
¥62.4¥80.0 -
快速认识世界汽车标志与车名
¥32.4¥49.9 -
基于机器学习理论的通信辐射源个体识别
¥52.3¥78.0 -
智能汽车电子与软件:开发方法、系统集成、流程体系与项目管理
¥70.9¥109.0 -
《二手纯电动乘用车鉴定评估技术规范》实施与细则(修订版)
¥36.0¥45.0 -
稀土与稀有材料简史
¥42.9¥78.0 -
储能产业政策与典型项目案例解析
¥77.4¥98.0 -
中外服装史(第三版)
¥73.5¥98.0 -
智能金属矿山
¥42.6¥49.0 -
华夏衣裳 汉服制作实例教程
¥104.3¥149.0 -
机械加工基础入门 第3版
¥38.4¥59.0