×
超值优惠券
¥50
100可用 有效期2天

全场图书通用(淘书团除外)

关闭
智能系统与技术丛书PYTHON3智能数据分析快速入门

智能系统与技术丛书PYTHON3智能数据分析快速入门

1星价 ¥75.0 (6.3折)
2星价¥75.0 定价¥119.0
暂无评论
图文详情
  • ISBN:9787111628057
  • 装帧:一般胶版纸
  • 册数:暂无
  • 重量:暂无
  • 开本:16开
  • 页数:489
  • 出版时间:2018-06-01
  • 条形码:9787111628057 ; 978-7-111-62805-7

本书特色

内容简介
本书以Python相关技术为工具,讲解了如何基于机器学习等AI技术进行智能数据分析。
作者在Python数据挖掘与分析领域有10余年的工作经验,对AI技术驱动的智能数据分析有非常深入的研究。本书面向没有Python编程基础和AI技术基础的读者,由浅入深地提供了系统的Python智能数据分析的技术和方法。
全书共9章,从逻辑上可分为两个部分:
第壹部分:Python编程基础(1~4章)
这部分详细介绍了从事Python编程需要掌握的各种基础知识,包括开发环境的搭建与配置,以及各种语法和常见Python库的原理和使用方法。
第二部分:智能数据分析(第5~9章)
这部分对Python的数值分析库NumPy、数据处理库pandas、绘图库Matplotlib/Seaborn/Bokeh、机器学习与数据分析建模库scikit-lear等进行了详细地讲解,包含数据读取、数据预处理、模型构建、模型评价、结果可视化等整个数据分析的过程,能指导读者快速入门Python智能数据分析。

内容简介

内容简介本书以Python相关技术为工具,讲解了如何基于机器学习等AI技术进行智能数据分析。作者在Python数据挖掘与分析领域有10余年的工作经验,对AI技术驱动的智能数据分析有很好深入的研究。本书面向没有Python编程基础和AI技术基础的读者,由浅入深地提供了系统的Python智能数据分析的技术和方法。全书共9章,从逻辑上可分为两个部分:第壹部分:Python编程基础(1~4章)这部分详细介绍了从事Python编程需要掌握的各种基础知识,包括开发环境的搭建与配置,以及各种语法和常见Python库的原理和使用方法。第二部分:智能数据分析(第5~9章)这部分对Python的数值分析库NumPy、数据处理库pandas、绘图库Matplotlib/Seaborn/Bokeh、机器学习与数据分析建模库scikit-lear等进行了详细地讲解,包含数据读取、数据预处理、模型构建、模型评价、结果可视化等整个数据分析的过程,能指导读者快速入门Python智能数据分析。

目录

前言
第1章 Python概述 1
1.1 Python语言介绍 1
1.1.1 Python的发展史 1
1.1.2 Python特性 2
1.1.3 Python应用领域 3
1.1.4 Python机器学习优势 6
1.2 Python环境配置 8
1.2.1 Python 2还是Python 3 8
1.2.2 Anaconda简介 8
1.2.3 安装Anaconda 3 9
1.3 Python的解释器与IDE 12
1.3.1 Python的解释器 13
1.3.2 Python各IDE比较 13
1.3.3 PyCharm的安装与使用 16
1.3.4 Jupyter Notebook的使用 26
小结 32
课后习题 33
第2章 Python基础知识 34
2.1 固定语法 34
2.1.1 声明与注释 34
2.1.2 缩进与多行语句 36
2.1.3 保留字符与赋值 38
2.2 运算符 40
2.2.1 算术运算符 40
2.2.2 赋值运算符 41
2.2.3 比较运算符 43
2.2.4 逻辑运算符 44
2.2.5 按位运算符 44
2.2.6 身份运算符 45
2.2.7 成员运算符 46
2.2.8 运算符优先级 47
2.3 数据类型 48
2.3.1 基础数据类型 48
2.3.2 复合数据类型 55
2.4 Python I/O 63
2.4.1 input与print 64
2.4.2 文件I/O 67
小结 70
课后习题 70
第3章 控制语句 72
3.1 条件语句 72
3.1.1 if、elif与else 73
3.1.2 try、except与else 76
3.2 循环语句 80
3.2.1 for 81
3.2.2 while 83
3.2.3 break、continue与pass 85
3.2.4 列表推导式 89
小结 91
课后习题 91
第4章 函数与对象 94
4.1 函数 94
4.1.1 内置函数 94
4.1.2 自定义函数 101
4.1.3 匿名函数 107
4.2 对象 109
4.2.1 面向对象简介 109
4.2.2 属性与方法 110
4.2.3 装饰器 116
4.2.4 继承和多态 119
4.3 Python常用库安装 126
4.3.1 第三方库安装 126
4.3.2 第三方库导入 130
4.3.3 第三方库创建 131
小结 132
课后习题 133
第5章 NumPy数值计算 135
5.1 ndarray创建与索引 135
5.1.1 创建ndarray对象 135
5.1.2 ndarray的索引与切片 142
5.2 ndarray的基础操作 145
5.2.1 变换ndarray的形态 145
5.2.2 排序与搜索 151
5.2.3 字符串操作 156
5.3 ufunc 159
5.3.1 ufunc的广播机制 159
5.3.2 常用ufunc 160
5.4 matrix与线性代数 169
5.4.1 创建NumPy矩阵 169
5.4.2 矩阵的属性和基本运算 170
5.4.3 线性代数运算 172
5.5 NumPy文件读写 175
5.5.1 二进制文件读写 175
5.5.2 文件列表形式数据读写 178
小结 180
课后习题 180
第6章 pandas基础 182
6.1 pandas常用类 182
6.1.1 Series 182
6.1.2 DataFrame 187
6.1.3 Index 191
6.2 DataFrame基础操作 193
6.2.1 索引 193
6.2.2 排序 201
6.2.3 合并 204
6.3 其他数据类型操作 210
6.3.1 时间操作 210
6.3.2 文本操作 220
6.3.3 category操作 223
小结 227
课后习题 227
第7章 pandas进阶 229
7.1 数据读取与写入 229
7.1.1 CSV 229
7.1.2 Excel 231
7.1.3 数据库 233
7.2 DataFrame进阶 235
7.2.1 统计分析 235
7.2.2 分组运算 242
7.2.3 透视表和交叉表 248
7.3 数据准备 250
7.3.1 缺失值处理 251
7.3.2 重复数据处理 255
7.3.3 连续特征离散化处理 256
7.3.4 哑变量处理 259
小结 260
课后习题 260
第8章 绘图 263
8.1 Matplotlib绘图基础 263
8.1.1 编码风格 263
8.1.2 动态rc参数 267
8.1.3 散点图 273
8.1.4 折线图 276
8.1.5 饼图 278
8.1.6 直方图与条形图 280
8.1.7 箱线图 282
8.2 Seaborn进阶绘图 285
8.2.1 Seaborn基础 285
8.2.2 关系图 301
8.2.3 分类图 311
8.2.4 分布图 329
8.2.5 回归图 334
8.2.6 矩阵图 341
8.2.7 网格图 345
8.3 Bokeh交互式绘图 356
8.3.1 基本构成与语法 356
8.3.2 常见图形绘制 370
8.3.3 导出与嵌入 375
8.3.4 运行Bokeh应用程序 379
小结 381
习题 381
第9章 scikit-learn 383
9.1 数据准备 383
9.1.1 标准化 383
9.1.2 归一化 387
9.1.3 二值化 388
9.1.4 独热编码 389
9.2 降维 391
9.2.1 PCA 392
9.2.2 随机投影 396
9.2.3 字典学习 402
9.2.4 独立成分分析 408
9.2.5 非负矩阵分解 412
9.2.6 线性判别分析 416
9.3 聚类 420
9.3.1 K-Means 421
9.3.2 层次聚类 424
9.3.3 DBSCAN 427
9.3.4 高斯混合模型 430
9.4 分类 434
9.4.1 Logistic回归 435
9.4.2 支持向量机 439
9.4.3 决策树 443
9.4.4 *近邻 447
9.4.5 朴素贝叶斯 450
9.4.6 随机森林 452
9.4.7 多层感知机 456
9.5 回归 460
9.5.1 *小二乘回归 461
9.5.2 岭回归 464
9.5.3 Lasso回归 466
9.5.4 决策树回归 468
9.5.5 随机森林回归 471
9.5.6 多层感知机回归 473
9.6 模型选择 476
9.6.1 数据集划分 476
9.6.2 交叉验证 478
9.6.3 自动调参 479
9.6.4 模型评估 481
小结 486
课后习题 487
展开全部

作者简介

作者介绍
李明江
大数据专家,贵州省计算机学会常务理事,黔南州大数据专家委员会委员,黔南州计算机学会会长,黔南州教育信息化建设专家库专家,黔南民族师范学院计算机与信息学院院长,全国高校大数据教育联盟理事。
主持过多项省厅级科研项目,并在《计算机应用研究》《科技通报》上发表多篇大数据分析与数据挖掘相关技术的研究论文,著有《数据挖掘的应用与实践:案例与探析》《计算机网络技术与应用》等著作。
张良均
大数据挖掘与分析专家、模式识别专家、AI技术专家。有10余年大数据挖掘与分析经验,擅长Python、R语言、Hadoop、Matlab等技术实现的数据挖掘与分析,对机器学习等AI技术驱动的数据分析也有深入的研究。作者介绍
李明江
大数据专家,贵州省计算机学会常务理事,黔南州大数据专家委员会委员,黔南州计算机学会会长,黔南州教育信息化建设专家库专家,黔南民族师范学院计算机与信息学院院长,全国高校大数据教育联盟理事。
主持过多项省厅级科研项目,并在《计算机应用研究》《科技通报》上发表多篇大数据分析与数据挖掘相关技术的研究论文,著有《数据挖掘的应用与实践:案例与探析》《计算机网络技术与应用》等著作。
张良均
大数据挖掘与分析专家、模式识别专家、AI技术专家。有10余年大数据挖掘与分析经验,擅长Python、R语言、Hadoop、Matlab等技术实现的数据挖掘与分析,对机器学习等AI技术驱动的数据分析也有深入的研究。
为电信、电力、政府、互联网、生产制造、零售、银行、生物、化工、医药等多个行业上百家大型企业提供过数据挖掘应用与咨询服务,实践经验非常丰富。是华南师范大学、中南财经政法大学、广东工业大学、西安理工大学、广西科技大学、重庆交通大学、桂林电子科技大学等校外硕导。
撰写了《Python数据分析与挖掘实战》《R语言数据分析与挖掘实战》《数据挖掘:实用案例分析》《Hadoop大数据分析与挖掘实战》等多部畅销书,累计销量近20万册。

预估到手价 ×

预估到手价是按参与促销活动、以最优惠的购买方案计算出的价格(不含优惠券部分),仅供参考,未必等同于实际到手价。

确定
快速
导航