×
超值优惠券
¥50
100可用 有效期2天

全场图书通用(淘书团除外)

关闭
化工过程模拟:绿色、节能与精密控制:green, energy saving and precise control

化工过程模拟:绿色、节能与精密控制:green, energy saving and precise control

1星价 ¥50.2 (8.5折)
2星价¥50.2 定价¥59.0
暂无评论
图文详情
  • ISBN:9787122357243
  • 装帧:平装-胶订
  • 册数:暂无
  • 重量:暂无
  • 开本:26cm
  • 页数:225页
  • 出版时间:2019-11-01
  • 条形码:9787122357243 ; 978-7-122-35724-3

本书特色

《Chemical Process Simulation》将研究生学术思维训练与过程模拟实践相结合,旨在提高研究生的科学认知与工程实践能力。本书利用GROMACS, Materials Studio, Aspen Plus, MATLAB等软件,从分子动力学、相平衡、稳态模拟及动态控制等方面,重点阐述化工过程模拟的绿色、节能与精密控制技术。本书共11章内容,第1章主要介绍汽液平衡和液液平衡实验数据的回归,第2章主要介绍离子液体相行为及其热力学性质的预测,离子液体在分离混合物方面的应用,第3~5章主要介绍过程强化与集成方面的实例,主要包括膜分离、热集成、热耦合、热泵隔壁塔精馏技术,第6~11章主要介绍了萃取精馏、变压精馏、间歇精馏及反应精馏等精馏过程的动态控制案例。

《Chemical Process Simulation》可作为高等院校化工等相关专业研究生的教学参考书,也可供从事化工过程开发与设计的工程技术人员参考。


《Chemical Process Simulation》将研究生学术思维训练与过程模拟实践相结合,旨在提高研究生的科学认知与工程实践能力。本书利用GROMACS, Materials Studio, Aspen Plus, MATLAB等软件,从分子动力学、相平衡、稳态模拟及动态控制等方面,重点阐述化工过程模拟的绿色、节能与精密控制技术。本书共11章内容,第1章主要介绍汽液平衡和液液平衡实验数据的回归,第2章主要介绍离子液体相行为及其热力学性质的预测,离子液体在分离混合物方面的应用,第3~5章主要介绍过程强化与集成方面的实例,主要包括膜分离、热集成、热耦合、热泵隔壁塔精馏技术,第6~11章主要介绍了萃取精馏、变压精馏、间歇精馏及反应精馏等精馏过程的动态控制案例。

《Chemical Process Simulation》可作为高等院校化工等相关专业研究生的教学参考书,也可供从事化工过程开发与设计的工程技术人员参考。


内容简介

《Chemical Process Simulation》将研究生学术思维训练与过程模拟实践相结合,旨在提高研究生的科学认知与工程实践能力。本书利用GROMACS, Materials Studio, Aspen Plus, MATLAB等软件,从分子动力学、相平衡、稳态模拟及动态控制等方面,重点阐述化工过程模拟的绿色、节能与精密控制技术。本书共11章内容,第1章主要介绍汽液平衡和液液平衡实验数据的回归,第2章主要介绍离子液体相行为及其热力学性质的预测,离子液体在分离混合物方面的应用,第3~5章主要介绍过程强化与集成方面的实例,主要包括膜分离、热集成、热耦合、热泵隔壁塔精馏技术,第6~11章主要介绍了萃取精馏、变压精馏、间歇精馏及反应精馏等精馏过程的动态控制案例。 《Chemical Process Simulation》可作为高等院校化工等相关专业研究生的教学参考书,也可供从事化工过程开发与设计的工程技术人员参考。

目录

Chapter 1 Simulation of Vapor-liquid and Liquid-liquid Equilibrium for Binary/ Ternary Systems

1.1 Introduction / 1

1.2 Data Regression of Binary System / 1

1.3 Data Regression of Ternary System by NRTL / 8

1.4 Data Regression of Ternary System by UNIQUAC / 11

References / 13

  

Chapter 2 Application of Green Solvents in Absorption and Extraction

2.1 Introduction / 14

2.2 Molecular Dynamics Simulation / 14

2.2.1 Generating GROMACS Supported Files / 15

2.2.2 Defining the Unit Box and Filling Solvent / 20

2.2.3 Energy Minimization / 22

2.2.4 NVT Balance / 24

2.2.5 NPT Balance / 26

2.2.6 Finishing MD / 27

2.2.7 Analysis / 28

2.3 Simulation of Extractive Distillation Using the Ionic Liquid / 30

2.3.1 Analysis of Correlation Model / 30

2.3.2 Definition of the Ionic Liquid in Aspen Plus / 32

2.4 Simulation of CO2 Absorption Using the Ionic Liquid / 37

2.4.1 Calculation of σ-profile Value / 38

2.4.2 Definition of the Ionic Liquid in Aspen Plus / 43

2.4.3 Simulation of CO2 Capture Using the Ionic Liquid / 44

2.5 Simulation of Extractive Distillation Using Deep Eutectic Solvents / 49

2.5.1 Definition of Deep Eutectic Solvents in Aspen Plus / 50

2.5.2 Process Simulation / 52

References / 54

  

Chapter 3 Membrane Separation Process

3.1 Introduction / 56

3.2 Principle of Membrane Separation / 56

3.3 Separation of DMSO-water Using Membrane / 57

References / 64

  

Chapter 4 Heat-integration and Thermally Coupled Distillation

4.1 Introduction / 65

4.2 Steady-state Simulation of THF-methanol System with Heat- integration / 66

4.2.1 Simulation without Heat-integration / 66

4.2.2 Simulation with Partial Heat-integration / 70

4.2.3 Simulation with Full Heat-integration / 73

4.3 Thermally Coupled Distillation Process / 76

4.4 Energy-saving Thermally Coupled Ternary Extractive Distillation Process / 78

References / 86

  

Chapter 5 Heat Pump Distillation for Close-boiling Mixture

5.1 Introduction / 88

5.2 Main Forms of Heat Pump Distillation / 88

5.3 Heat Pump Distillation Process of Binary System Close-boiling Mixture / 90

References / 99

  

Chapter 6 Energy-saving Side-stream Extractive Distillation Process

6.1 Introduction / 100

6.2 Steady-state Design of Side-stream Extractive Distillation / 100

6.3 Dynamic Control of Side-stream Extractive Distillation / 101

6.3.1 Control Structure with Side-stream Composition/Temperature Cascade Connection / 105

6.3.2 Control Structure with S/F and Composition Controller Connection / 105

6.3.3 Improved Dynamic Control Structure / 107

References / 112

  

Chapter 7 Pressure-swing Distillation for Minimum-boiling Azeotropes

7.1 Introduction / 113

7.2 Converting from Steady-state to Dynamic Simulation / 113

7.3 Control Structures of the Process without Heat-integration / 116

7.3.1 Basic Control Structure / 116

7.3.2 QR/F1 Control Structure / 127

7.3.3 Control Structures of the Process with FullHeat-integration / 128

References / 130

  

Chapter 8 Ternary Extractive Distillation System Using Mixed Entrainer

8.1 Introduction / 132

8.2 Converting from Steady-state to Dynamic Simulation / 132

8.3 Dynamic Control of Ternary Extractive Distillation Process Using Single Solvent / 135

8.3.1 Basic Control Structure / 135

8.3.2 Dual Temperature Control Structure / 140

8.3.3 Composition with Q R/F Control Structure / 142

8.4 Dynamic Control of Ternary Extractive Distillation Process Using Mixed Entrainer / 145

8.4.1 Basic Control Structure / 145

8.4.2 Composition with Q R/F Control Structure / 146

8.5 Comparisons of the Dynamic Performances of Two Processes / 148

References / 152

  

Chapter 9 Hybrid Process Including Extraction and Distillation

9.1 Introduction / 153

9.2 Solvent Selection / 153

9.3 Simulation of the Extraction Combined with Distillation Process / 155

9.3.1 Extraction Combined with Heterogeneous Azeotropic Distillation Process (LEHAD) / 155

9.3.2 Extraction Combined with Extractive Distillation Process (LEED) / 160

9.4 Dynamic Simulation of Hybrid Extraction-distillation / 164

9.4.1 Selection of Temperature-sensitive Trays / 164

9.4.2 Dynamic Control of the LEHAD Process / 167

9.4.3 Dynamic Control of the LEED Process / 174

9.5 Energy-saving Hybrid Process with Mixed Solvent / 181

9.6 Dynamics of Hybrid Process with Mixed Solvent / 185

9.6.1 Selection of Temperature-sensitive Trays / 185

9.6.2 Control Structure with Fixed Reflux Ratio / 187

References / 190

  

Chapter 10 Batch Distillation Integrated with Quasi-continuous Process

10.1 Introduction / 191

10.2 Feasibility of Pressure-swing Batch Distillation Based on the Ternary Residue Curve Maps / 191

10.3 Double Column Batch Stripper Process / 193

10.3.1 Design of Double Column Batch Stripper Process / 193

10.3.2 Control of Double Column Batch Stripper Process / 196

10.4 Triple Column Process / 201

10.4.1 Design of Triple Column Process / 201

10.4.2 Control of Triple Column Process / 202

References / 206

  

Chapter 11 Simulation of Chemical Reaction Process Based on Reaction Kinetics

11.1 Introduction / 207

11.2 Continuously Stirred Tank Reactor / 208

11.3 Simulation of Cyclohexanone Ammoximation Process / 209

11.3.1 Steady-state Simulation of Cyclohexanone Ammoximation Process / 209

11.3.2 Dynamic Simulation of Cyclohexanone Ammoximation Process / 209

References / 225

 
展开全部

预估到手价 ×

预估到手价是按参与促销活动、以最优惠的购买方案计算出的价格(不含优惠券部分),仅供参考,未必等同于实际到手价。

确定
快速
导航