×
超值优惠券
¥50
100可用 有效期2天

全场图书通用(淘书团除外)

关闭
光纤传感与结构健康监测技术(英文版)

光纤传感与结构健康监测技术(英文版)

1星价 ¥128.7 (6.5折)
2星价¥128.7 定价¥198.0
暂无评论
图文详情
  • ISBN:9787568047296
  • 装帧:一般铜版纸
  • 册数:暂无
  • 重量:暂无
  • 开本:16开
  • 页数:354
  • 出版时间:2019-03-01
  • 条形码:9787568047296 ; 978-7-5680-4729-6

本书特色

The international academic and engineering circles have reached a broad consensus to monitor the health of civil engineering structure, master the health state of structure in real time, discover and eliminate the potential safety hazard in time and guarantee the long-term safe service of various civil engineering structures. The health monitoring technology based on optical fiber sensing has unique advantages such as small volume, light weight, high sensitivity, anti-electromagnetic interference capability, integrated transmission and sensing functions, easy networking and distributed measurement. Therefore, it made rapid development and considerable progress in recent 20 years. Its role in the health monitoring of engineering structure is increasingly important. The author and his research team have dedicated themselves to the research on the development and application of health monitoring technology based on optical fiber sensing for a long time. They have rich research achievements and engineering practice experience.

内容简介

This book focuses on optical fiber sensing and structural health monitoring technolo-gies. It provides detailed information on the basic theory of F-P optical fiber sensors,fiber Bragg grating sensors, fiber laser grating sensors and fully distributed optical fiber sensors. Drawing on the authors’ research achievements and many years of practical experience in the field of engineering structure health monitoring, the book elabo-rates on the structural principle, design and manufacture of optical fiber sensors and monitoring technologies, and briefly describes advances made with regard to multiple

目录

1 Introduction 1
1.1 Optical Fiber and Optical Fiber Sensor 1
1.1.1 Optical Fiber 1
1.1.2 Optical Fiber Sensor 2
1.2 Classification and Characteristics of Optical Fiber Sensor 3
1.2.1 Classification of Optical Fiber Sensor 3
1.2.2 Characteristics of Optical Fiber Sensor 10
1.3 Current Status and Development Trends of Optical Fiber Sensing Technology 11
1.3.1 Current Status of Optical Fiber Sensing Technology 11
1.3.2 Development Trends of Optical Fiber Sensing Technology 15
1.4 Structural Health Monitoring Based on Optical Fiber Sensing Technology 21
References 25

2 Optical Fiber Interferometer Based on F-P Cavity 27
2.1 White Light Interferometric F-P Optical Fiber Sensor 27
2.1.1 Principle of White Light Interferometric F-P Optical Fiber Sensor 27
2.1.2 White Light Interferometric Sensor Head 30
2.1.3 Embedded White Light Interferometric Optical Fiber Temperature Sensor 38
2.1.4 Embedded White Light Interferometric Optical Fiber Strain Sensor 48
2.2 Optical Accelerometers Based on F-P Cavity 58
2.2.1 Preliminary Test for Encapsulation 58
2.2.2 Structure of Accelerometer 60
2.2.3 Principle of Accelerometer 61
2.2.4 Test Results and Discussions 62
2.3 Summary 64
References 64

3 Fiber Bragg Grating Sensor 66
3.1 Basic Principle of Fiber Bragg Grating 66
3.1.1 Coupled Mode Theory for Fiber Bragg Grating 66
3.1.2 Principle and Sensitivity of Fiber Bragg Grating Temperature Sensor 69
3.1.3 Principle and Sensitivity of FBG Strain Sensor 70
3.1.4 Theoretical Analysis of FBG Temperature-strain Cross Sensitivity 71
3.2 Temperature Self-compensated FBG Sensor Based on Thermal Stress 72
3.2.1 Principle of Temperature Self-compensation 72
3.2.2 Structural Design 74
3.2.3 Theoretical Analysis of Strain Sensing Characteristics 77
3.2.4 Parameter Analysis of Temperature Compensation Structure Design 80
3.2.5 FBG Strain Sensor with Integral Temperature Compensation Structure 85
3.2.6 Small FBG Strain Sensor 97
3.3 FBG Soil-pressure Sensor Based on Dual L-shaped Levers 102
3.3.1 Structure and Principle of the Soil-pressure Sensor 103
3.3.2 Design and Strength Check of Soil-pressure Sensor 104
3.3.3 Laboratory Calibration Tests 106
3.3.4 Field Tests 107
3.4 Fiber Bragg Grating Displacement Sensor 108
3.4.1 Sensor Design 109
3.4.2 Tests and Results 110
3.5 Fiber Bragg Grating Tilt Sensor 111
3.5.1 Structure Design of Fiber Bragg Grating Tilt Sensor 112
3.5.2 Sensing Performance of Fiber Bragg Grating Tilt Sensor 117
3.5.3 Indoor Simulation Experiment of Fiber Bragg Grating Tilt Sensor 120
3.6 Summary 123
References 124

4 Fiber Laser Sensor 126
4.1 Acoustic Emission Receiver Based on DFB 126
4.1.1 Operation Principles 127
4.1.2 Investigation of AE Directional Sensitivity of DFB Fiber Laser 129
4.1.3 Location Algorithm 134
4.1.4 Tests and Results 136
4.2 DFB Fiber Laser Accelerometers 138
4.2.1 Principles 139
4.2.2 Wavelet Denoising 144
4.2.3 Inertial Algorithm 145
4.2.4 Test Scheme 145
4.2.5 Test Results 146
4.3 Summary 148
References 148

5 Fully Distributed Optical Fiber Sensor 151
5.1 Spontaneous Scattering Spectrum in Optical Fiber 151
5.2 Application of Spontaneous Scattering in Fully Distributed Optical Fiber Sensing Technology 152
5.3 Winding Optical Fiber Strain Sensor 152
5.3.1 Theoretical Basis and Analysis 153
5.3.2 Structure and Parameters of Winding Optical Fiber Strain Sensor 159
5.3.3 Measurement System of Winding Optical Fiber Strain Sensor 162
5.3.4 Sensing Characteristic of Winding Optical Fiber Strain Sensor 169
5.3.5 Distributed Sensing Characteristics of Winding Optical Fiber Strain Sensor 174
5.4 Large Displacement Sensor Based on Fully Distributed Optical Fiber Sensor 175
5.4.1 Principle of Fully Distributed Displacement Sensing Based on Fiber Bragg Grating 176
5.4.2 Displacement Loading Test 177
5.4.3 Analysis on the Displacement Sensing Characteristics 179
5.5 Summary 183
References 184

6 Monitoring Technology for Prestressing Tendons Using Fiber Bragg Grating 186
6.1 Theoretical Analysis on Prestress Loss of Concrete Structure 186
6.1.1 Calculation of Prestress Loss 186
6.1.2 Calculation of Effective Prestress 195
6.2 Design of FBG Prestress Sensor at Anchor Head 195
6.2.1 Prestress Monitoring Principle at Anchor Head of Prestressed Concrete Structure 196
6.2.2 Structure Design and Principle of FBG Prestress Sensor at Anchor Head 197
6.2.3 Design of FBG Prestress Sensor at Anchor Head 198
6.2.4 Calibration Experiment for FBG Prestress Sensor at the Anchor Head 200
6.3 Prestress Monitoring Technology Using Fiber Bragg Grating Sensor Arrays 202
6.3.1 Structure and Performance Parameters of Steel Strands 202
6.3.2 Combination of Fiber Bragg Grating and Steel Strand and Stress Measurement Principle for Steel Strand 202
6.3.3 Quasi-distributed Stress Monitoring of Prestressing Steel Strand Based on Fiber Bragg Grating 204
6.4 Summary 208
References 208

7 Cable Stress Monitoring Technology Based on Fiber Bragg Grating 209
7.1 Current Status 209
7.2 Cable Tension Monitoring System Based on FBG 210
7.2.1 Composition and Working Principle of Cable Tension Monitoring System 210
7.2.2 Characteristics of Cable Tension Monitoring System 211
7.2.3 FBG Pressure Sensor 212
7.2.4 Hardware Design 215
7.2.5 Software Design 216
7.3 Distributed Stress Monitoring System for Cable Based on FBG 218
7.3.1 Composition and Working Principle of Distributed Stress Monitoring System for Cable 218
7.3.2 Characteristics of Cable Tension Monitoring System 219
7.3.3 System Design of Signal Acquisition Processing and Analysis 219
7.3.4 Realization of Remote Monitoring for Smart Structure in Cable 220
7.4 Test for Condition Monitoring of Cable Structure 221
7.4.1 Cable Model and Test System 221
7.4.2 Test of Cable Tension 222
7.4.3 Test of Cable Stress Distribution 223
7.4.4 Test of Cable Modal Parameter 223
7.5 Summary 225
References 226

8 Intelligent Monitoring Technology for Fiber Reinforced Polymer Composites Based on Fiber Bragg Grating 227
8.1 Preparation and Properties of Fiber Reinforced Polymer Composites 227
8.1.1 Selection and Proportioning of Component Materials 227
8.1.2 Performance Test and Analysis of Fiber Reinforced Polymer Bar 229
8.1.3 Experiment Study on Anchorage System for Fiber Reinforced Polymer Bar 237
8.2 Interface Bonding Analysis of Fiber Bragg Grating Sensors and Composite Materials 239
8.3 Sensing Characteristics of Smart FRP Rod 241
8.3.1 Preparation of Smart FRP Rod 242
8.3.2 Test and Analysis on Sensing Characteristics of the Smart FPR Rod 243
8.4 Summary 245
References 245

9 Concrete Crack Monitoring Using Fully Distributed Optical Fiber Sensor 247
9.1 Main Parameters of Fully Distributed Optical Fiber Sensing Technology 247
9.2 Brillouin Scattering Principle and Sensing Mechanism in Optical Fiber 249
9.2.1 Brillouin Scattering in Optical Fiber 249
9.2.2 Sensing Mechanism Based on Brillouin Scattering 255
9.3 FBG-based Positioning Method for BOTDA Sensing 258
9.3.1 Traditional Positioning Method for Fully Distributed Optical Fiber Sensing 258
9.3.2 Description of FBG-based Positioning Method 259
9.3.3 Results and Discussion 261
9.4 Concrete Crack Monitoring Using Fully Distributed Optical Fiber Sensing Technology 269
9.4.1 Tests 269
9.4.2 Results and Discussion 271
9.5 Summary 279
References 279

10 Engineering Applications of Optical Fiber Sensing Technology 281
10.1 Long-term Health Monitoring and Alarm System for Wuhu Yangtze River Bridge 281
10.1.1 Brief Introduction to Wuhu Yangtze River Bridge 281
10.1.2 General Overview of the Long-term Health Monitoring and Alarm System 282
10.1.3 Strain Monitoring System Based on Optical Fiber Sensing 284
10.2 Monitoring System of Liaohe Bridge on Qinhuangdao-Shenyang Passenger Dedicated Line 287
10.2.1 Brief Introduction to Liaohe Bridge 287
10.2.2 Application of Optical Fiber Sensor in Concrete Hydration Heat Testing 288
10.2.3 Application of Optical Fiber Sensor in Construction Quality Monitoring of Concrete Bridge 289
10.2.4 Application of Optical Fiber Strain Sensor in Dynamic Monitoring of Concrete Box Beam 290
10.3 Long-term Health Monitoring System for Xinyuan Highway Xiaogou Grand Bridge 293
10.3.1 Brief Introduction to Xiaogou Grand Bridge 293
10.3.2 Composition of Long-term Health Monitoring System 293
10.3.3 Strain Monitoring System Based on Fiber Bragg Grating 296
10.3.4 Effect Analysis of Strain Monitoring 298
10.4 Long-term Monitoring System of Shuohuang Railway High-steep Slope 299
10.4.1 Brief Introduction to Monitoring Section 299
10.4.2 Monitoring Scheme for Slope Deformation 300
10.4.3 Monitoring Points Layout and Monitoring Equipments Installation 301
10.4.4 System Operation and Monitoring Results 302
10.5 Summary 304
References 304
展开全部

作者简介

杜彦良,男,1956年10月16日出生,博士,教授,博士生导师,中国工程院院士,大型工程结构状态监测与安全控制专家。长期从事交通工程领域安全监测与可靠性评价研究,率先将智能结构理论与方法融入交通工程安全保障技术领域,围绕国家高速铁路、重载铁路、高原高寒铁路、既有线提速铁路、城市轨道交通和高速公路等重大工程建设,开展了大型桥梁、多年冻土路基、大型工程结构和长大隧道施工装备状态监测与安全控制的理论研究、技术创新和应用推广,取得了多项创新性成果。获得省部级以上科技奖励18项,其中国家科技进步一等奖1项、二等奖2项,省部级科技进步一等奖7项、技术发明一等奖1项;获国家教学成果一等奖1项、二等奖2项;授权国家专利20余项;出版专著/教材9部,发表论文180余篇。获得何梁何利科学技术奖、国家杰出专业技术人才、国家教学名师和河北省突出贡献奖、河北省巨人团队领军人才等荣誉称号。2013年当选为中国工程院院士。

预估到手价 ×

预估到手价是按参与促销活动、以最优惠的购买方案计算出的价格(不含优惠券部分),仅供参考,未必等同于实际到手价。

确定
快速
导航