×
超值优惠券
¥50
100可用 有效期2天

全场图书通用(淘书团除外)

关闭
深度学习:丛神经网络到深度强化学习的演进

深度学习:丛神经网络到深度强化学习的演进

1星价 ¥70.3 (7.9折)
2星价¥70.3 定价¥89.0
图文详情
  • ISBN:9787302562047
  • 装帧:平装-胶订
  • 册数:暂无
  • 重量:暂无
  • 开本:16开
  • 页数:352
  • 出版时间:2021-01-01
  • 条形码:9787302562047 ; 978-7-302-56204-7

本书特色

本书首先概述人工智能、深度学习相关的基本概念和发展历程;然后详细介绍深度学习的基本理论和 算法,包括神经网络的关键技术、卷积神经网络的主要框架和应用实例、循环神经网络和无监督学习深度 神经网络的模型和应用、深层神经网络的参数优化方法、深度学习模型的轻量化方案以及移动端深度学习 案例;之后阐述强化学习的基本理论和算法,包括传统的强化学习方法及其衍生算法以及新型的多智能体 或多任务学习模型;*后介绍深度强化学习的具体算法及应用、迁移学习的概念及其在深度学习和强化学 习中的应用。 本书可作为学习深度学习及强化学习算法的参考书,也可作为高等院校相关课程的教材,还可供从事 人工智能领域的专业研究人员和工程技术人员阅读。

内容简介

深度学习是人工智能发展的第三次浪潮,相关算法在计算机视觉、自然语言处理、游戏、机器人、无人驾驶及医疗诊断等众多领域取得了显著的成果,在国内外引起了广泛的关注。目前深度学习技术在产业界发展成熟,广大高等院校也相继开设人工智能相关专业。为满足广大读者对于深度学习的学习需求,作者编著了此书。本书按照神经网络到深度强化学习的脉络介绍深度学习的演进与相关理论,帮助读者形成关于深度学习和强化学习系统全面的知识体系。《深度学习——从神经网络到深度强化学习的演进》呈现了以下深度学习和强化学习的理论、技术与应用:神经网络与深度学习; 卷积神经网络; 循环神经网络及其他深层神经网络; 深度神经网络的训练方法; 轻量化神经网络模型; 强化学习算法; 多智能体多任务学习; 深度强化学习; 迁移学习。

目录

第1章 人工智能与深度学习概述 1.1 人工智能与机器学习 1.1.1 人工智能的发展历程 1.1.2 机器学习及深度学习的发展历程 1.1.3 人工智能与机器学习及深度学习的关系 1.2 机器学习的分类 1.2.1 监督学习 1.2.2 非监督学习 1.2.3 半监督学习 1.2.4 强化学习 1.2.5 其他分类方式 1.3 深度学习的分类及发展趋势 1.3.1 深度神经网络 1.3.2 卷积神经网络 1.3.3 其他深度神经网络 1.3.4 深度学习的发展趋势 1.4 深度学习与强化学习的结合 1.4.1 强化学习 1.4.2 强化学习算法分类 1.4.3 深度强化学习 本章小结 第2章 神经网络与深度学习 2.1 深度学习简介 2.1.1 传统机器学习算法与深度学习算法对比 2.1.2 深度学习发展历程 2.2 图像分类问题 2.2.1 KNN分类器 2.2.2 线性分类器 2.2.3 损失及优化 2.3 损失函数 2.3.1 折页损失函数 2.3.2 交叉熵损失函数 2.4 反向传播算法 2.4.1 计算图 2.4.2 反向传播举例 2.5 人工神经网络 2.5.1 神经网络的结构 2.5.2 神经网络的分类 2.6 激活函数 2.6.1 常用激活函数 2.6.2 各种激活函数的优缺点 本章小结 第3章 卷积神经网络 3.1 基本概念 3.1.1 卷积 3.1.2 池化 3.1.3 经典网络LeNet5 3.2 几种卷积神经网络介绍 3.2.1 AlexNet 3.2.2 VGGNet 3.2.3 NIN 3.2.4 GoogLeNet 3.2.5 ResNet 3.3 计算机视觉问题 3.3.1 图像分类 3.3.2 目标定位 3.3.3 目标检测 3.3.4 图像分割 3.4 深度学习应用实例 3.4.1 深度学习框架 3.4.2 MNIST手写数字识别 3.4.3 基于DeepLabV3 模型的轨道图像分割 本章小结 第4章 循环神经网络及其他深层神经网络 4.1 从DNN到RNN 4.1.1 RNN结构 4.1.2 深度 RNN 4.1.3 RNN的训练 4.2 RNN变体 4.2.1 LSTM 4.2.2 GRU 4.2.3 其他结构 4.3 RNN应用举例 4.3.1 时序数据预测 4.3.2 自然语言处理 4.4 自编码器 4.4.1 稀疏自编码器 4.4.2 去噪自编码器 4.4.3 压缩自编码器 4.5 深度生成式模型 4.5.1 全可见信念网络 4.5.2 变分自编码器 4.5.3 生成式对抗网络 本章小结 第5章 深层神经网络的训练方法 5.1 参数更新方法 5.1.1 梯度下降算法的问题 5.1.2 基于动量的更新 5.1.3 二阶优化方法 5.1.4 共轭梯度 5.1.5 拟牛顿法 5.2 自适应学习率算法 5.2.1 学习率衰减 5.2.2 AdaGrad算法 5.2.3 RMSProp算法 5.2.4 AdaDelta算法 5.2.5 Adam算法 5.2.6 几种常见优化算法的比较 5.3 参数初始化 5.3.1 合理初始化的重要性 5.3.2 随机初始化 5.3.3 Xavier初始化 5.3.4 He初始化 5.3.5 批量归一化 5.3.6 预训练 5.4 网络正则化 5.4.1 正则化的目的 5.4.2 L1和L2正则化 5.4.3 权重衰减 5.4.4 提前停止 5.4.5 数据增强 5.4.6 丢弃法 5.4.7 标签平滑 5.5 训练深层神经网络的小技巧 5.5.1 数据预处理 5.5.2 超参数调优 5.5.3 集成学习 5.5.4 监视训练过程 本章小结 第6章 轻量化神经网络模型 6.1 深度学习轻量化模型 6.1.1 SqueezeNet模型 6.1.2 MobileNet模型 6.1.3 ShuffleNet模型 6.1.4 Xception模型 6.2 深度神经网络模型压缩 6.2.1 推理阶段的压缩算法 6.2.2 训练阶段的压缩算法 6.3 深度神经网络的硬件加速 6.3.1 推理阶段的硬件加速 6.3.2 训练阶段的硬件加速 6.4 移动端深度学习 6.4.1 移动端深度学习概述 6.4.2 移动端深度学习框架 6.4.3 移动端深度学习示例 本章小结 第7章 强化学习算法 7.1 强化学习综述 7.1.1 目标、单步奖励与累积回报 7.1.2 马尔可夫决策过程 7.1.3 值函数与*优值函数 7.2 动态规划方法 7.2.1 策略迭代 7.2.2 值迭代 7.3 基于值函数的强化学习算法 7.3.1 基于蒙特卡罗的强化学习算法 7.3.2 基于时间差分的强化学习算法 7.3.3 TDλ算法 7.4 基于策略梯度的强化学习算法 7.4.1 何时应用基于策略的学习方法 7.4.2 策略梯度详解 7.4.3 蒙特卡罗策略梯度算法 7.4.4 ActorCritic算法 7.5 值函数近似和衍生算法 7.5.1 值函数近似 7.5.2 基于值函数近似的TD方法 7.5.3 基于线性值函数近似的GTD方法 7.5.4 OffPolicy ActorCritic算法 本章小结 第8章 多智能体多任务学习 8.1 多智能体学习 8.1.1 多智能体强化学习背景 8.1.2 多智能体强化学习任务分类及算法介绍 8.1.3 多智能体增强学习平台 8.2 多任务学习 8.2.1 多任务学习的背景与定义 8.2.2 多任务监督学习 8.2.3 其他多任务学习 8.2.4 多任务学习的应用 8.3 元学习 8.3.1 从模型评估中学习 8.3.2 从任务特征中学习 8.4 联邦学习 8.4.1 背景 8.4.2 联邦学习的特点及优势 8.4.3 联邦学习的分类 8.4.4 联邦学习的应用 本章小结 第9章 深度强化学习 9.1 基于值函数的深度强化学习 9.1.1 深度Q学习 9.1.2 深度Q学习的衍生方法 9.2 基于策略梯度的深度强化学习 9.2.1 深度确定性策略梯度算法 9.2.2 异步深度强化学习算法 9.2.3 信赖域策略优化及其衍生算法 9.3 深度强化学习的应用 9.3.1 计算机围棋程序AlphaGo 9.3.2 深度强化学习的其他应用 9.3.3 深度强化学习在通信网络中的应用 本章小结 第10章 迁移学习 10.1 迁移学习简介及分类 10.1.1 迁移学习概述 10.1.2 迁移学习的分类 10.2 迁移学习的应用 10.2.1 迁移学习在深度学习中的应用 10.2.2 迁移学习在强化学习中的应用 本章小结 附录A *近邻算法实现代码 附录B TensorFlow训练LeNet5网络实现代码 附录C 基于DeepLabv3 模型的轨道图像分割 附录D 时序数据预测实现代码 附录E 自然语言处理实现代码 附录F 移动端深度学习示例 参考文献
展开全部

相关资料

刘群 华为公司诺亚方舟实验室语音语义首席科学家 近年来,深度学习和强化学习的突破使得人工智能再度辉煌,引了人们广泛的兴趣。《深度学习—从神怪网络到深度强化学习的演进》一书的作者结合自己的理解和实践经验,系统地介绍了深度学习和强化学习的理论、方法和应用,具有根好的参考价值。 韩竹 IEE Fellow 美国体斯效大学教授 深度学习作为人工智能领域的一个关键技术,与强化学习的结合将会使它进发新的活力。《深度学习——从神经网络到深度强化学习的演进》梳理了神经网络到深度强化学习的演进脉络,对于初学者甚至经验丰富的从业人员,都有很好的借鉴价值?。 于非 IEEE Fellow 加拿大卡尔领大学教授 《深度学习—从神经网络到深度强化学习的演进》详细阐述了深度学习、强化学习及深度强化学习的基本原理、核心算法和实践应用,介绍了深度学习和强化学习的前沿技术,例如移动端深度学习、联邦学习、迁移学习等。该书可以作为研究深度学习技术的参考书和工具书,帮助读者座清概念、梳理思路、开拓视野。 苏森 北京邮电大学人工智能学院院长 深度神经网络和强化学习的结合开辟了深度强化学习相关理论和应用的新时代。《深度学习——从神经网络预深度强化学习的演进》从神经网络开始介绍深度学习的原理和应用案例,并对强化学习及深度强化学习的概念和算法进行总结梳理。本书适合广大读者作为深度强化学习技术的入门读物。 王小军 爱尔兰都柏林城市大学硬件加速网络数据处理实验室负责人 人工智能,特别是其中的深度学习,是当前炙手可热的领域,无数学子投身到对其理论、方法和工具的学习中。但是,目前市面上系统阐述深度学习算法原理的优秀教材仍然不多。《深度学习——从神经网络到深度强化学习的演进》的出版恰逢其时。该书立足理论基础,深入浅出地介绍了神经网络到深度强化学习的基本理论及经典算法,有利于读者真正理解并掌握深度学习的理论基础。

作者简介

魏翼飞 北京邮电大学教授,博士生导师。加拿大卡尔顿大学联合培养博士,爱尔兰都柏林城市大学博士后,北京邮电大学理学院副院长(2014—2016年),美国休斯顿大学访问学者(2016—2017年)。目前主要研究深度学习、强化学习及区块链技术。作为负责人先后主持3项国家自然科学基金项目,参与完成了3项国家科技重大专项、2项国家科技支撑计划项目。在国内外学术期刊上发表SCI检索论文20余篇,EI检索论文30余篇,申请专利30余项。

预估到手价 ×

预估到手价是按参与促销活动、以最优惠的购买方案计算出的价格(不含优惠券部分),仅供参考,未必等同于实际到手价。

确定
快速
导航