×
超值优惠券
¥50
100可用 有效期2天

全场图书通用(淘书团除外)

关闭
暂无评论
图文详情
  • ISBN:9787302603535
  • 装帧:一般胶版纸
  • 册数:暂无
  • 重量:暂无
  • 开本:其他
  • 页数:248
  • 出版时间:2022-06-01
  • 条形码:9787302603535 ; 978-7-302-60353-5

本书特色

系统阐述技术体系:密切结合我国大数据产业、数据安全产业的特点,系统阐述数据安全与治理的内涵、特点,全面论述数据安全与治理的方法、原理。 合理编排应用案例:针对数据安全与治理技术体系的相关内容,引入大量应用案例,以期提升高校学生、研发机构、社会公众的数据安全与治理意识,促进数据要素沿着安全之路健康、快速发展。 科学配置课后习题:每章末同步配置单选、多选、判断、简答、论述等5类习题,全书*后附有两套模拟试卷,以帮助读者检验其对知识点的掌握情况。 提供立体化教学资源:免费配备全书教学资源,包括电子课件和习题答案,可通过扫描前言中的二维码下载。 准确定位学习对象:适用于高等学校大数据科学,大数据技术,大数据管理与应用,网络安全等相关专业本科生、研究生,网络安全管理机构、信息产业管理部门相关管理人员。 随书赠送教学资源:电子课件和习题答案,获取地址见书前言二维码。教材服务QQ:1815317009

内容简介

《数据安全与治理》密切结合我国大数据产业、数据安全产业的特点,全面系统地介绍了数据安全与治理的内涵、特点、方法、原理与技术。全书分为10章。其中,第1章介绍了数据安全与治理的基本概念,第5、6、7、9章介绍了数据安全的相关技术(含数据加密、数据脱敏、数据资产保护、数据审计),第3、4章介绍了数据治理的相关技术(含数据质量管控、数据采集),第2、8、10章介绍了数据安全治理的相关技术(含数据分类分级、数据资产交易、数据司法存证)。 《数据安全与治理》在每章末均配置了复习题,在全书*后附有模拟试卷,题型包括单选题、多选题、判断题、简答题和论述题,以帮助读者检验其对知识点的掌握情况。 《数据安全与治理》可作为高等学校大数据科学、大数据技术、大数据管理与应用、网络安全等相关专业本科生、研究生的教材或教学参考书,也可作为网络安全管理机构、信息产业管理部门相关管理人员的业务工作参考资料,还可作为大数据应用开发企业、数据安全企业的从业人员的培训教材。

目录

第1章 绪论 1

1.1 数据的概念 1

1.1.1 数据的定义及特征 1

1.1.2 数据的类别 2

1.1.3 数据的度量方法 4

1.1.4 数据、信息、知识、智慧之间的关系 4

1.2 数据安全的概念 5

1.2.1 数据安全的定义 5

1.2.2 数据安全的范围 5

1.2.3 数据安全PA体系 5

1.3 数据治理的概念 8

1.3.1 数据治理的定义 8

1.3.2 数据治理的特征 8

1.3.3 数据治理的体系结构 9

1.4 数据安全治理的概念 12

1.4.1 数据安全治理的定义 12

1.4.2 数据安全治理的本质 12

1.4.3 数据安全治理与传统数据安全的区别 13

1.4.4 数据安全治理体系 13

1.5 概念间的逻辑关系及本书框架结构 14

1.5.1 概念间的逻辑关系 14

1.5.2 本书框架结构 15

参考文献 16

复习题 16

第2章 数据分类分级技术 20

2.1 数据元素的概念 20

2.2 数据分类的概念、原则及方法 21

2.2.1 数据分类的概念 21

2.2.2 数据分类的基本原则 21

2.2.3 数据分类的基本方法 22

2.2.4 数据分类综合案例:铁路大数据分类 25

2.3 数据分级的概念、原则及方法 27

2.3.1 数据分级的概念 27

2.3.2 数据分级的基本原则 27

2.3.3 数据分级的基本流程 28

2.3.4 数据分级的基本方法 29

2.3.5 数据分级案例:金融数据分级 33

2.4 数据分类分级综合案例:个人信息分类分级 33

2.4.1 个人信息分类分级概述 33

2.4.2 个人信息分类分级结果 34

参考文献 37

复习题 37

第3章数据质量管控技术 40

3.1 数据质量的概念 40

3.1.1 数据质量的定义 40

3.1.2 数据质量控制框架 40

3.1.3 数据质量问题产生的原因 41

3.1.4 数据质量管控的重要性 43

3.2 数据质量监控规则 44

3.2.1 完整性监控规则 44

3.2.2 及时性监控规则 44

3.2.3 准确性监控规则 45

3.2.4 一致性监控规则 45

3.2.5 唯一性监控规则 45

3.2.6 有效性监控规则 45

3.2.7 监控规则的技术实现方法 46

3.3 数据质量评价技术 50

3.3.1 数据质量评价方法 50

3.3.2 数据质量指标计算方法 50

3.4 数据质量管控技术 52

3.4.1 数据采集阶段 53

3.4.2 数据存储阶段 53

3.4.3 数据处理阶段 54

3.4.4 数据应用阶段 55

3.5 数据质量管控案例 56

3.5.1 项目背景介绍 56

3.5.2 大数据平台数据架构 56

3.5.3 数据质量管控技术实施 57

参考文献 59

复习题 59

第4章 数据采集技术 62

4.1 数据采集的概念 62

4.1.1 数据采集的定义 62

4.1.2 数据采集的原则 63

4.2 数据源 64

4.2.1 个人数据 64

4.2.2 组织数据 64

4.2.3 实体数据 65

4.2.4 数据库数据 65

4.2.5 网络数据 66

4.2.6 文献数据 66

4.3 数据采集技术简介 67

4.3.1 数据采集技术的分类 67

4.3.2 人工采集技术 67

4.3.3 半人工采集技术 71

4.3.4 自动采集技术 72

4.4 数据采集质量控制技术 74

4.4.1 数据采集质量控制原则 74

4.4.2 数据采集质量控制模式 74

4.4.3 数据采集质量评价方法 75

4.5 数据采集安全控制策略 75

4.5.1 数据采集安全控制要求 75

4.5.2 数据采集安全控制策略 76

4.6 数据采集综合案例:汽车数据采集及其安全控制策略 77

参考文献 78

复习题 79

第5章数据加密技术 82

5.1 数据加密的相关概念 82

5.1.1 数据加密的概念 82

5.1.2 数据加密技术的组成 83

5.1.3 数据加密技术的作用 85

5.2 国外主要数据加密算法 85

5.2.1 DES对称加密算法 85

5.2.2 AES对称加密算法 87

5.2.3 RSA非对称加密算法 88

5.2.4 MD5散列算法 89

5.2.5 SHA1散列算法 90

5.2.6 SHA2散列算法 91

5.3 国内主要数据加密算法 92

5.3.1 SM2公钥密码算法 93

5.3.2 SM3散列算法 96

5.3.3 SM4分组密码算法 97

5.3.4 SM9椭圆加密算法 100

5.4 数据加密综合案例:商用密码技术在某政务系统中的应用 107

5.4.1 背景与现状 107

5.4.2 密码应用需求 109

5.4.3 密码应用技术框架 110

5.4.4 密码应用部署 112

参考文献 114

复习题 115

第6章数据脱敏技术 118

6.1 数据脱敏的概念 118

6.1.1 数据脱敏的定义 118

6.1.2 数据脱敏的原则 118

6.1.3 数据脱敏的流程 119

6.1.4 数据脱敏与数据匿名化、数据去标识化间的关系 120

6.2 数据脱敏的类别 121

6.2.1 结构化数据脱敏 121

6.2.2 非结构化数据脱敏 122

6.3 敏感数据识别策略 123

6.3.1 敏感数据识别的概念 123

6.3.2 敏感数据源识别策略 124

6.3.3 敏感数据识别策略 124

6.4 数据脱敏方法 ·124

6.4.1 数据脱敏方法的类别 124

6.4.2 经典数据脱敏方法简介 125

6.4.3 现代隐私保护方法简介 127

6.5 数据脱敏产品及应用案例 129

6.5.1 数据脱敏产品总体架构 129

6.5.2 数据脱敏产品应用部署 132

6.5.3 数据脱敏产品在金融系统中的应用案例—某银行客户隐私数据脱敏策略 133

参考文献 134

复习题 135

第7章 数据资产保护技术 138

7.1 数据资产的概念 138

7.1.1 数据资产的定义 138

7.1.2 数据资产的特征 139

7.1.3 数据资产的要素 140

7.2 数据资产管理的概念 140

7.2.1 数据资产管理的定义 140

7.2.2 数据资产管理的基本原则 141

7.3 数据资产管理策略 141

7.3.1 数据资产识别策略 142

7.3.2 数据资产确权策略 142

7.3.3 数据资产应用策略 142

7.3.4 数据资产盘点策略 142

7.3.5 数据资产变更策略 143

7.3.6 数据资产处置策略 143

7.4 数据资产价值评估技术 144

7.4.1 数据资产评估方法 144

7.4.2 数据资产评估体系 145

7.5 数据资产安全保护技术 150

7.5.1 数据资产安全保护的概念 150

7.5.2 数据资产安全保护权属体系 151

7.5.3 数据资产安全保护技术体系 153

7.6 数据资产保护综合案例:面向双碳服务平台的数据资产安全保护技术 153

7.6.1 双碳服务平台简介 153

7.6.2 双碳服务平台涉及的数据资产 154

7.6.3 面向双碳服务平台的数据资产安全保护系统 155

参考文献 157

复习题 158

第8章数据资产交易技术 161

8.1 数据资产交易的概念 161

8.1.1 数据资产交易的定义 161

8.1.2 数据资产交易的主要特点 161

8.1.3 数据资产交易面临的问题 163

8.2 数据资产确权 164

8.2.1 数据资产确权的概念 165

8.2.2 数据资产确权的原则及路径 166

8.2.3 数据资产确权的方法 168

8.3 数据资产定价 169

8.3.1 数据资产定价的概念 169

8.3.2 数据资产定价的方法 170

8.3.3 数据资产定价案例 172

8.4 数据资产交易监管 173

8.4.1 数据资产交易监管的概念 173

8.4.2 数据资产交易监管原则 174

8.4.3 数据资产交易监管模式 174

8.4.4 数据资产交易监管内容 175

8.5 数据资产交易平台 178

8.5.1 数据资产交易平台的概念 178

8.5.2 数据资产交易平台的总体架构 179

参考文献 181

复习题 182

第9章数据审计技术 186

9.1 数据审计的概念与作用 186

9.1.1 数据审计的背景 186

9.1.2 数据审计的概念 187

9.1.3 数据审计的作用 188

9.2 数据库审计技术 189

9.2.1 数据库审计的数据采集 189

9.2.2 数据库审计的事件审计 190

9.2.3 数据库审计的统计分析 191

9.3 主机审计技术 191

9.3.1 主机审计的数据采集 191

9.3.2 主机审计的事件审计 192

9.3.3 主机审计的统计分析 193

9.4 网络审计技术 193

9.4.1 网络审计的数据采集 193

9.4.2 网络审计的事件审计 195

9.4.3 网络审计的统计分析 195

9.5 应用审计技术 196

9.5.1 应用审计的数据采集 196

9.5.2 应用审计的事件审计 197

9.5.3 应用审计的统计分析 197

9.6 数据审计应用案例:面向高校校园网的网络审计系统 198

参考文献 199

复习题 200

第10章 数据司法存证技术 203

10.1 数据司法存证的概念 203

10.1.1 数据司法存证的背景 203

10.1.2 数据司法存证的定义 204

10.1.3 数据司法存证的基本原则 205

10.2 数据司法存证的基本要求 206

10.2.1 数据司法存证的总体要求 206

10.2.2 数据司法存证的具体要求 206

10.3 第三方数据存证平台 208

10.3.1 第三方数据存证平台的类别 208

10.3.2 第三方数据存证平台的基本功能 208

10.3.3 第三方数据存证平台的安全要求 211

10.3.4 第三方数据存证平台的相关技术简介 211

10.4 数据存证的司法实践 213

10.4.1 数据存证的法律效力 213

10.4.2 数据存证的司法证明力 215

10.4.3 数据存证的应用模式:以小贷业务为例 216

10.4.4 数据存证的主要应用场景 217

10.5 数据存证案例 219

10.5.1 知识产权案例 219

10.5.2 金融借贷案例 219

10.5.3 网络诈骗案例 220

参考文献 220

复习题 221

附录 224

附录A 模拟试卷(一) 224

附录B 模拟试卷(二) 230



展开全部

预估到手价 ×

预估到手价是按参与促销活动、以最优惠的购买方案计算出的价格(不含优惠券部分),仅供参考,未必等同于实际到手价。

确定
快速
导航