×
基于退化建模的设备剩余寿命预测方法

基于退化建模的设备剩余寿命预测方法

1星价 ¥53.4 (6.0折)
2星价¥53.4 定价¥89.0
暂无评论
图文详情
  • ISBN:9787118126433
  • 装帧:一般胶版纸
  • 册数:暂无
  • 重量:暂无
  • 开本:其他
  • 页数:176
  • 出版时间:2022-10-01
  • 条形码:9787118126433 ; 978-7-118-12643-3

内容简介

本书从设备复杂非线性退化特征建模的角度出发,系统开展基于退化建模的设备剩余寿命预测方法研究,重点解决设备复杂非线性退化过程的演变规律、不接近维修活动对剩余寿命预测结果的影响机理、步进加速应力下剩余寿命自适应预测策略等关键科学问题,不仅可以丰富和发展当前退化建模及剩余寿命预测理论,而且可以进一步拓展剩余寿命预测方法的应用领域,为开展基于状态的预测维护和智能健康管理提供技术支撑。

目录

第1章 绪论
1.1 研究背景及意义
1.2 数据驱动的剩余寿命预测方法概述
1.3 国内外研究现状
1.3.1 退化建模的研究现状
1.3.2 先验参数估计的研究现状
1.3.3 剩余寿命预测的研究现状
1.4 总体研究思路
第2章 数据驱动的设备退化建模方法
2.1 引言
2.2 数据驱动的退化模型
2.2.1 退化轨迹模型
2.2.2 退化量分布模型
2.2.3 随机过程模型
2.3 退化建模过程分析
2.3.1 失效机理分析
2.3.2 退化试验设计
2.3.3 退化数据处理
2.3.4 退化模型选取
2.3.5 分布假设检验
2.4 退化模型的参数估计
2.4.1 LS法
2.4.2 MLE法
2.4.3 EM算法
第3章 基于非线性退化建模的设备剩余寿命预测方法
3.1 引言
3.2 考虑随机效应的非线性退化设备剩余寿命预测方法
3.2.1 考虑随机效应的非线性退化建模
3.2.2 基于EM算法的先验参数估计
3.2.3 基于KF算法的隐含状态更新
3.2.4 基于首达时分布的设备剩余寿命分布推导
3.2.5 仿真实例分析
3.3 考虑随机效应和测量误差的非线性退化设备剩余寿命预测方法
3.3.1 考虑随机效应和测量误差的非线性退化建模
3.3.2 基于EM算法的先验参数估计
3.3.3 基于KF算法的隐含状态更新
3.3.4 基于首达时分布的设备剩余寿命分布推导
3.3.5 仿真实例分析
第4章 基于隐含非线性退化建模的设备剩余寿命预测方法
4.1 引言
4.2 隐含非线性退化建模
4.3 基于MLE算法的先验参数估计
4.4 隐含状态分步更新
4.4.1 基于贝叶斯推断的漂移系数更新
4.4.2 基于EKF算法的真实退化状态更新
4.5 基于首达时分布的设备剩余寿命分布推导
4.6 实例分析
4.6.1 数值仿真
4.6.2 铣床实例
第5章 考虑随机失效阈值影响的设备剩余寿命预测方法
5.1 引言
5.2 考虑随机效应和测量误差的设备退化建模
5.2.1 考虑随机效应和测量误差的非线性维纳退化模型
5.2.2 测量误差影响下的非线性维纳退化过程特征分析
5.3 基于EM算法的参数估计
5.3.1 退化模型先验参数估计
5.3.2 失效阈值分布系数估计
5.4 考虑随机失效阈值影响的设备剩余寿命预测
5.4.1 基于KF算法的退化状态在线更新
5.4.2 考虑随机失效阈值的剩余寿命分布推导
5.5 算例分析
5.5.1 数值仿真示例
5.5.2 燃油泵实例
5.5.3 结论
第6章 融入不完全维护效果的设备剩余寿命预测方法
6.1 引言
6.2 融人不完全维护效果的设备退化建模
6.2.1 基于复合非齐次泊松过程的不完全维护模型
6.2.2 考虑不完全维护影响的随机退化模型
6.3 基于EM算法和MLE算法的参数联合估计
6.3.1 基于EM算法的退化模型先验参数估计
6.3.2 基于MLE算法的不完全维护模型参数估计
6.4 融入不完全维护效果的设备剩余寿命预测
6.4.1 基于贝叶斯原理的退化状态在线更新
6.4.2 融入不完全维护效果的剩余寿命分布推导
6.5 算例分析
6.5.1 数值仿真示例
6.5.2 陀螺仪实例
6.5.3 结论
第7章 基于加速退化建模的设备剩余寿命预测方法
7.1 引言
7.2 加速模型与加速因子
7.2.1 加速模型
7.2.2 加速因子
7.3 步进加速退化试验过程
7.4 非线性步进加速退化建模方法
7.4.1 模型假设
7.4.2 随机加速模型
7.4.3 考虑随机效应的非线性步进加速退化模型
7.4.4 考虑随机效应和测量误差的非线性步进加速退化模型
7.5 基于两步MLE的参数估计方法
7.5.1 考虑随机效应的加速退化模型参数估计
7.5.2 考虑随机效应和测量误差的加速退化模型参数估计
7.6 基于随机系数更新的剩余寿命预测模型
7.6.1 基于贝叶斯方法的随机系数更新
7.6.2 随机系数的剩余寿命分布函数
7.7 基于随机系数和当前状态同步更新的剩余寿命预测模型
7.7.1 基于KF的随机系数和当前状态同步更新
7.7.2 随机系数和当前状态的剩余寿命联合分布函数
7.8 仿真实例
7.8.1 先验参数估计结果
7.8.2 随机系数在线更新结果
7.8.3 随机系数和当前状态同步更新结果
7.8.4 目标设备剩余寿命预测
7.8.5 结论
第8章 基于比例加速退化建模的设备剩余寿命预测方法
8.1 引言
8.2 基于比例关系的设备加速退化建模
8.2.1 比例退化模型
8.2.2 比例加速退化模型
8.3 基于不同样本量的参数估计
8.3.1 基于多台同类设备加速退化数据的参数估计
8.3.2 基于单台设备加速退化数据的参数自适应估计
8.4 基于比例加速退化建模的设备剩余寿命预测
8.4.1 基于KF算法的退化状态在线更新
8.4.2 基于比例加速退化建模的剩余寿命分布推导
8.5 算例分析
8.5.1 单台行
展开全部

预估到手价 ×

预估到手价是按参与促销活动、以最优惠的购买方案计算出的价格(不含优惠券部分),仅供参考,未必等同于实际到手价。

确定
快速
导航