×
超值优惠券
¥50
100可用 有效期2天

全场图书通用(淘书团除外)

关闭
点云配准从入门到精通

点云配准从入门到精通

1星价 ¥76.3 (7.0折)
2星价¥76.3 定价¥109.0
暂无评论
图文详情
  • ISBN:9787111721826
  • 装帧:平装-胶订
  • 册数:暂无
  • 重量:暂无
  • 开本:16开
  • 页数:272
  • 出版时间:2023-03-01
  • 条形码:9787111721826 ; 978-7-111-72182-6

本书特色

点云配准是计算机视觉的核心任务之一,在诸多工程技术领域中具有重要应用,如机器视觉、无人驾驶、元宇宙、虚拟现实、逆向工程、人机交互、测绘遥感、机器人学和CAD/CAM等。其理论技术发展已有40多年历史。本书由PCL(Point Cloud Learning) 中国创始人团队及测绘、三维视觉领域多位科研专家联合编写,系统性地对已经成熟并广泛应用的算法和技术进行了深度解析和总结。

内容简介

三维点云处理技术广泛应用在逆向工程、CAD/CAM、机器人学、测绘遥感、机器视觉、虚拟现实、人机交互、无人驾驶和元宇宙等诸多领域。点云配准作为三维视觉领域的一个重要分支,已有40多年的发展历史,本书则系统性地对近些年来已经成熟的算法和工具进行梳理和总结。全书分两部分,**部分为硬核技术篇(第1~4章),详细介绍了点云配准概念、应用领域,以及点云配准必要的数理知识,*后对点云配准过程中相关关键步骤(如关键点提取、特征描述等)所涉及的经典算法进行理论与实战的多维展示,为读者深入了解复杂配准算法做好前期理论与技术储备工作。第二部分为算法应用篇(第5~6 章),涵盖了十几个开源的刚性与非刚性配准经典算法,从算法原理、理论基础、技术实现、应用案例及优缺点等方面进行详细介绍,以算法的源码实现分析来帮助读者搞清楚每一个算法的细节与计算过程。*终通过算法的应用案例分析,让读者从理论、技术和应用层面重新评价与认识每一个算法,助力产业界的读者快速将相关技术应用落地,学术界的读者快速系统地完成入门与提升。随书附赠程序源代码、案例高清效果图和结果视频,以及授课用PPT,力求从多个角度提升读者阅读体验和知识含量。本书可作为科研人员和公司产品开发工程师的参考指南,也可作为计算机图形学、机器人学、遥感测量、虚拟现实、人机交互、CAD/CAM逆向工程等领域相关专业的高年级本科生、研究生的学习手册。

目录

前言
硬核技术篇
第1章 绪论
1.1什么是三维点云
1.2点云数据获取技术
1.2.1接触式
1.2.2非接触式
1.3什么是点云配准
1.3.1刚性配准
1.3.2非刚性配准
1.4三维点云配准应用领域
1.4.1机器人及无人驾驶领域
1.4.2测绘遥感领域
第2章 配准相关数学基础
2.1空间变换及其参数化
2.1.1什么是欧式变换与变换矩阵
2.1.2什么是轴角
2.1.3什么是欧拉角
2.1.4什么是四元数
2.1.5其他空间变换
2.2空间变换的不同表示之间的互相转换与实战
2.2.1旋转矩阵与轴角
2.2.2旋转矩阵与欧拉角
2.2.3旋转矩阵与四元数
2.2.4轴角与四元数
2.2.5轴角与欧拉角
2.2.6欧拉角与四元数
2.2.7空间变换实战
2.3对应点已知时优变换求解原理与实战
2.3.1刚性变换的问题描述
2.3.2优平移向量求解
2.3.3优旋转矩阵求解
2.3.4反射矩阵消除
2.3.5基于SVD刚性变换矩阵计算流程总结
2.3.6SVD估计变换矩阵的关键代码分析
2.3.7SVD变换矩阵估计算法应用案例
第3章 关键点检测
3.1什么是点云关键点检测
3.1.1关键点检测的概念与作用
3.1.2关键点检测的发展
3.2ISS(内蕴形状特征)
3.2.1ISS检测原理
3.2.2【实战】基于ISS关键点检测点云配准
3.3NARF(法线对齐的径向特征)
3.3.1NARF检测原理
3.3.2【实战】基于NARF关键点检测点云配准
3.4Harris
3.4.1Harris检测原理
3.4.2【实战】基于Harris关键点检测点云配准
3.5SIFT 3D
3.5.1SIFT 3D检测原理
3.5.2【实战】基于SIFT 3D关键点检测点云配准
3.6SUSAN
3.6.1SUSAN检测原理
3.6.2【实战】基于SUSAN关键点检测点云配准
3.7AGAST(角点检测)
3.7.1AGAST检测原理
3.7.2【实战】基于AGAST关键点检测点云配准
3.8在点云配准任务上各个关键点检测表现对比
第4章 点云特征描述子
4.1什么是点云特征描述子
4.2Spin Image(旋转图像)
4.2.1Spin Image特征描述子原理
4.2.2【实战】Spin Image配准实例
4.33DSC(3D形状上下文特征)
4.3.13DSC特征描述子原理
4.3.2【实战】利用3DSC进行ICP精配准
4.4PFH(点特征直方图)
4.4.1PFH特征描述子原理
4.4.2【实战】PFH计算与对应点可视化
4.5FPFH(快速点特征直方图)
4.5.1FPFH特征描述子原理
4.5.2【实战】FPFH计算与对应点可视化
4.6SHOT(方向直方图)
4.6.1SHOT特征描述子原理
4.6.2【实战】SHOT计算与对应点可视化
4.7VFH(视点特征直方图)
4.7.1VFH特征描述子原理
4.7.2【实战】点云VFH特征提取实例
4.8在废钢点云上对比实验
算法应用篇
第5章 经典刚性配准算法
5.1稀疏迭代近点算法(Sparse ICP)
5.1.1Sparse ICP发明者
5.1.2Sparse ICP算法设计的灵感、应用范围、优缺点和泛化能力
5.1.3Sparse ICP算法原理描述
5.1.4Sparse ICP算法实现及关键代码分析
5.1.5Sparse ICP实战案例测试及结果分析
5.2快速鲁棒的ICP(Fast and Robust Iterative Closest Point)
5.2.1快速鲁棒的ICP发明者
5.2.2快速鲁棒的ICP算法设计的灵感、应用范围、优缺点和泛化能力
5.2.3快速鲁棒的ICP算法原理
5.2.4快速鲁棒的ICP算法实现及关键代码分析
5.2.5快速鲁棒的ICP实战案例测试及结果分析
5.3泛化的近点迭代法(Generalized-ICP)
5.3.1Generalized-ICP发明者
5.3.2Generalized-ICP算法原理描述
5.3.3Generalized-ICP算法实现及关键代码分析
5.3.4Generalized-ICP实战案例测试及结果分析
5.4全局迭代近点算法(Global Iterative Closest Point,GoICP)
5.4.1GoICP发明者
5.4.2GoICP算法设计的灵感、应用范围、优缺点和泛化能力
5.4.3GoICP算法的原理描述
5.4.4GoICP算法实现及关键代码分析
5.4.5GoICP实战案例分析、算法测试过程及结果分析
5.5针对环境构图的全局一致性扫描点云数据对齐(Graph SLAM)
5.5.1Graph SLAM发明者
5.5.2Graph SLAM算法设计的灵感、应用范围、优缺点
5.5.3Graph SLAM算法原理描述
5.5.4Graph SLAM算法实现及关键代码分析
5.5.5Graph SLAM算法测试过程及结果分析
5.6Multiview LM-ICP 配准算法
5.6.1Multiview LM-ICP配准算法背景介绍
5.6.2Multiview LM-ICP配准算法原理描述
5.6.3Multiview LM-ICP配准算法实现及代码分析
5.6.4Multiview LM-ICP配准实战案例分析
5.7基于正态分布变换的配准算法(NDT)
5.7.1NDT配准算法发明者
5.7.2正态分布变换配准算法设计的灵感、应用范围和优缺点
5.7.3正态分布变换配准算法原理描述
5.7.4正态分布变换配准算法实例及其关键代码分析
5.8SDRSAC:基于半正定的随机点云配准算法
5.8.1SDRSAC发明者
5.8.2SDRSAC算法设计的灵感、应用范围和优缺点
5.8.3SDRSAC算法原理描述
5.8.4SDRSAC实现的关键代码分析
5.8.5SDRSAC实战案例分析
5.9PointDSC:利用深度空间一致性的鲁棒性点云配准算法
5.9.1PointDSC发明者
5.9.2PointDSC算法设计的灵感、应用范围、优缺点和泛化能力
5.9.3PointDSC算法原理描述
5.9.4PointDSC算法实现及关键代码分析
5.9.5PointDSC算法测试过程及结果分析
5.10体素化广义迭代近点配准算法(VGICP)
5.10.1VGICP发明者
5.10.2VGICP算法设计的灵感、应用范围和优缺点
5.10.3VGICP算法原理描述
5.10.4VGICP算法实现及关键代码分析
5.10.5VGICP算法实战案例测试及结果分析
5.11SAC-IA初始配准算法
5.11.1SAC-IA发明者
5.11.2SAC-IA算法应用范围和优缺点
5.11.3SAC-IA算法原理描述
5.11.4SAC-IA算法实现及关键代码分析
5.11.5SAC-IA算法实战案例测试及结果分析
5.12Super 4PCS配准算法
5.12.1Super 4PCS发明者
5.12.2Super 4PCS算法设计的灵感、应用范围和优缺点
5.12.3Super 4PCS算法原理描述
5.12.4Super 4PCS算法实现及关键代码分析
5.12.5Super 4PCS实战案例测试过程及结果分析
5.13K-4PCS点云配准算法
5.13.1K4PCS点云配准发明者
5.13.2K4PCS算法设计的灵感、应用范围和优缺点
5.13.3K-4PCS算法原理描述
5.13.4K-4PCS算法实现及关键代码分析
5.13.5K-4PCS实战案例分析、算法测试过程及结果分析
第6章 经典非刚性配准算法
6.1具有重加权位置和变换稀疏性的鲁棒非刚性配准算法(RPTS)
6.1.1RPTS发明者及算法概述
6.1.2RPTS算法原理描述
6.1.3RPTS算法的实现及关键代码分析
6.1.4RPTS算法测试过程及结果分析
6.2Fast_RNRR基于拟牛顿法求解的鲁棒非刚性配准算法(QuasiNewton Solver for Robust NonRigid Registration)
6.2.1Fast_RNRR基于拟牛顿法求解的鲁棒非刚性配准算法概述
6.2.2Fast_RNRR算法原理描述
6.2.3Fast_RNRR算法实现及关键代码分析
6.2.4Fast_RNRR实战案例与算法测试分析
6.3非刚性ICP算法
6.3.1非刚性ICP算法发明者
6.3.2非刚性ICP算法设计的灵感、应用范围和泛化能力
6.3.3非刚性ICP算法原理描述
6.3.4非刚性ICP实战案例及关键代码分析
6.3.5非刚性ICP测试过程及结果分析
6.4基于高斯混合模型的鲁棒点集配准算法
6.4.1基于高斯混合模型的鲁棒点集配准算法发明者
6.4.2鲁棒高斯混合模型算法设计的灵感、应用范围、优缺点和泛化能力
6.4.3鲁棒高斯混合模型算法原理描述
6.4.4鲁棒高斯混合模型算法实现及关键代码分析
6.4.5鲁棒高斯混合模型实战案例分析
6.5一致点漂移算法(CPD)
6.5.1CPD发明者
6.5.2CPD算法设计的灵感、应用范围、优缺点和泛化能力
6.5.3CPD算法原理描述
6.5.4CPD实战案例及关键代码分析
6.5.5CPD测试过程及结果分析
展开全部

作者简介

郭浩 ,PCL(Point CloudLearning)中(www.pclcn.org)创始人之一。2008年开始B的外服的国相关行业的传道、授业和解惑。在点云据获取处理领域,公开发表EI/SCl论文十余及相关著作两本。

预估到手价 ×

预估到手价是按参与促销活动、以最优惠的购买方案计算出的价格(不含优惠券部分),仅供参考,未必等同于实际到手价。

确定
快速
导航