×
等离子体法制备碳点材料及其对铀的检测与吸附研究

等离子体法制备碳点材料及其对铀的检测与吸附研究

1星价 ¥83.3 (7.0折)
2星价¥83.3 定价¥119.0
暂无评论
图文详情
  • ISBN:9787302631743
  • 装帧:一般胶版纸
  • 册数:暂无
  • 重量:暂无
  • 开本:其他
  • 页数:184
  • 出版时间:2023-06-01
  • 条形码:9787302631743 ; 978-7-302-63174-3

内容简介

铀的富集分离对减少环境污染和缓解铀资源短缺具有重要意义。吸附法是实现铀的富集分离的重要方法,其关键在于性能优良的吸附材料的制备。碳点是一种新型纳米碳材料,具有丰富的官能团和优良的荧光性质,在金属离子的吸附和检测领域极具潜力。《等离子体法制备碳点材料及其对铀的检测与吸附研究》建立了一种新型等离子体电化学法用于快速制备碳点,并首次将碳点用于铀酰离子的检测,制备了基于碳点的复合材料,用于吸附铀的同时实现了对吸附过程的在线监测,为碳点和等离子体方法的应用拓宽了新领域,同时为铀的吸附和在线监测提供了新思路,本书适用于化工、材料等领域的科学研究工作者。

目录

第1章绪论

1.1研究背景

1.1.1核电的发展与铀的开发利用

1.1.2含铀废水的产生及危害

1.1.3富集分离铀的意义

1.2富集分离铀的研究进展

1.2.1萃取法

1.2.2化学沉淀法

1.2.3离子交换法

1.2.4膜分离法

1.2.5吸附法

1.3碳点

1.3.1碳点的光学性质

1.3.2碳点的制备方法

1.3.3碳点在金属离子检测中的应用

1.3.4碳点复合材料的制备及应用

1.4常压等离子体电极

1.5研究意义和研究内容


第2章水热法制备氨基酸碳点及其对U(Ⅵ)的荧光响应

2.1引言

2.2实验部分

2.2.1实验试剂与仪器

2.2.2水热法制备氨基酸碳点

2.2.3碳点荧光量子产率的测定

2.2.4碳点对U(Ⅵ)和其他金属离子的荧光响应

2.2.5电位滴定法定量分析碳点表面的官能团

2.2.6电位滴定法分析GlyCDs和U(Ⅵ)的相互作用

2.3结果与讨论

2.3.1氨基酸碳点的制备和表征

2.3.2碳点对U(Ⅵ)的荧光响应性能探究

2.3.3碳点对其他金属离子的荧光响应性能探究

2.3.4碳点与U(Ⅵ)结合后的荧光淬灭机理

2.3.5电位滴定法研究碳点与U(Ⅵ)的相互作用


第3章等离子体法制备EDACDs及其对U(Ⅵ)的荧光响应

3.1引言

3.2实验部分

3.2.1实验试剂与仪器

3.2.2等离子体法制备EDACDs

3.2.3水热法制备HCDs

3.2.4EDACDs在检测U(Ⅵ)中的应用

3.3结果与讨论

3.3.1碳点的制备与表征

3.3.2反应机理的研究

3.3.3EDACDs在检测U(Ⅵ)中的应用


第4章等离子体法制备PDCDs及其对U(Ⅵ)的荧光响应

4.1引言

4.2实验部分

4.2.1实验试剂和仪器

4.2.2等离子体阳极制备PDCDs

4.2.3等离子体阴极辅助多巴胺聚合

4.2.4多巴胺聚合的机理研究

4.2.5PDCDs在检测U(Ⅵ)中的应用

4.3结果与讨论

4.3.1PDCDs的制备与表征

4.3.2多巴胺聚合机理的研究

4.3.3PDCDs在检测U(Ⅵ)中的应用


第5章CDs/SBA-NH2复合材料的制备及其在U(Ⅵ)吸附监测中的应用

5.1引言

5.2实验部分

5.2.1实验试剂与仪器

5.2.2SBA-NH2的制备

5.2.3CDs/SBA-NH2复合材料的制备

5.2.4U(Ⅵ)的吸附实验

5.2.5U(Ⅵ)吸附过程的在线监测

5.3结果与讨论

5.3.1CDs/SBA-NH2复合材料的表征

5.3.2复合材料对U(Ⅵ)的吸附和荧光响应

5.3.3吸附过程的在线监测和选择性评价

5.3.4复合材料的脱附性能


第6章结论与展望

6.1结论

6.2创新性

6.3展望


参考文献


在学期间发表的学术论文


附录A等离子体辅助多巴胺聚合及其在材料表面改性中的应用


致谢





Contents


Chapter 1Introduction

1.1Research Background


1.1.1Development of Nuclear Power and

Utilization of Uranium

1.1.2Generation and Hazards of

UraniumContaining Wastewater

1.1.3Significance of Uranium Enrichment and Separation

1.2Research Progress on Uranium Enrichment and Separation

1.2.1Extraction Method

1.2.2Chemical Precipitation Method

1.2.3Ion Exchange Method

1.2.4Membrane Separation Method

1.2.5Adsorption Method

1.3Carbon Dots

1.3.1Optical Properties of CDs

1.3.2Preparation Method of CDs

1.3.3Application of CDs in Metal Ion Detection

1.3.4Preparation and Application of CDs Composites

1.4Atmospheric Pressure Microplasma Electrode

1.5Significance and Content of the Research


Chapter 2Hydrothermal Preparation of Amino Acid Carbon Dots and

their Fluorescence Response to U(Ⅵ)

2.1Introduction

2.2Experimental Section

2.2.1Experimental Reagents and Apparatus

2.2.2Preparation of Amino Acid CDs With

Hydrothermal Method

2.2.3Fluorescence Quantum Yield Determination of CDs

2.2.4Fluorescence Response of CDs to

U(Ⅵ) and Other Metal Ions

2.2.5Quantification of Functional Groups on CDs

Surface by Potentiometric Titration

2.2.6Interaction of GlyCDs and U(Ⅵ) by

Potentiometric Titration

2.3Results and Discussion

2.3.1Preparation and Characterization

of Amino Acid CDs

2.3.2Investigation of the Fluorescence

Response Performance of CDs to U(Ⅵ)

2.3.3Investigation of the Fluorescence Response

Properties of CDs to Other Metal Ions

2.3.4Fluorescence Quenching Mechanism of

CDs After Binding to U(Ⅵ)

2.3.5The Interaction of CDs With U(Ⅵ)

by Potentiometric Titration


Chapter 3Preparation of EDACDs by Microplasma Method and

Their Fluorescence Response to U(Ⅵ)

3.1Introduction

3.2Experimental Section

3.2.1Experimental Reagents and Apparatus

3.2.2Preparation of EDACDs With Microplasma Method

3.2.3Preparation of HCDs by Hydrothermal Method

3.2.4Application of EDACDs in U(Ⅵ) Detection

3.3Results and Discussion

3.3.1Preparation and Characterization of CDs

3.3.2Study of the Reaction Mechanism

3.3.3Application of EDACDs in U(Ⅵ) Detection


Chapter 4Preparation of PDCDs by Microplasma Method and Their

Fluorescence Response to U(Ⅵ)

4.1Introduction

4.2Experimental Section

4.2.1Experimental Reagents and Apparatus

4.2.2Preparation of PDCDs With Microplasma Anode

4.2.3Dopamine Polymerization Assisted

With Microplasma Cathode

4.2.4Mechanistic Study of Dopamine Polymerization

4.2.5Application of PDCDs in U(Ⅵ) Detection

4.3Results and Discussion

4.3.1Preparation and Characterization of PDCDs

4.3.2Study of The Mechanism of

Dopamine Polymerization

4.3.3Application of PDCDs in U(Ⅵ) Detection


Chapter 5Preparation of CDs/SBANH2 Composites and Their Application

in U(Ⅵ) Adsorption Monitoring

5.1Introduction

5.2Experimental Section

5.2.1Experimental Reagents and Apparatus

5.2.2Preparation of SBANH2

5.2.3Preparation of CDs/SBANH2 Composites

5.2.4U(Ⅵ) Adsorption Experiments

5.2.5Online Monitoring of U(Ⅵ) Adsorption Process

5.3Results and Discussion

5.3.1Characterization of CDs/SBANH2 Composites

5.3.2Adsorption and Fluorescence Response

of Composites to U(Ⅵ)

5.3.3Online Monitoring and Selectivity

Evaluation of Adsorption Processes

5.3.4Desorption Properties of the Composites


Chapter 6Conclusion and Outlooks

6.1Conclusion

6.2Innovativeness

6.3Outlooks


References


Academic Papers and Research Achievements During the Ph.D. Period


Appendix AMicroplasmaAssisted Dopamine Polymerization and Its

Application in Material Surface Modification


Acknowledgements


展开全部

作者简介

王哲,华北电力大学环境科学与工程学院讲师。主持国家自然科学基金、北京市优秀人才培育项目、核与辐射安全监管项目等多项课题,发表学术论文20余篇,获授权发明专利5项。

预估到手价 ×

预估到手价是按参与促销活动、以最优惠的购买方案计算出的价格(不含优惠券部分),仅供参考,未必等同于实际到手价。

确定
快速
导航