×
超值优惠券
¥50
100可用 有效期2天

全场图书通用(淘书团除外)

关闭
暂无评论
图文详情
  • ISBN:9787519296919
  • 装帧:平装-胶订
  • 册数:暂无
  • 重量:暂无
  • 开本:其他
  • 页数:252
  • 出版时间:2023-09-01
  • 条形码:9787519296919 ; 978-7-5192-9691-9

内容简介

本书被选编入了斯普林格经典的“数学研究生教材”系列。尽管市场上有关编码理论的书籍繁多,这本书以其高品质脱颖而出,是编码理论相关书籍榜上畅销不衰的经典。本书特色在于:简短、准确、数学严谨地介绍了书本主题内容,从数学家的角度清晰地提出了基本概念和思想,并在各种特殊类型的代码中加以说明。本书被推崇为每个想要了解编码代数理论的数学家的推荐阅读之书。再版版本除了添加了编码增益等内容,还附上了关于编码理论的近期新文献,让读者能够进一步拓展知识面。

目录

Preface to the Third Edition Preface to the Second Edition Preface to the First Edition CHAPTER 1 Mathematical Background 1.1. Algebra 1.2. Krawtchouk Polynomials 1.3. Cormbinatorial Theory 1.4. Probability Theory CHAPTER 2 Shannon's Theorem 2.1. Introduction 2.2. Shannon's Theorem 2.3. On Coding Gain 2.4. Comments 2.5. Problems CHAPTER 3 Linear Codes 3.1. Block Codes 3.2. Linear Codes 3.3. Hamming Codes 3.4. Majority Logic Decoding 3.5. Weight Enumerators 3.6. The Lee Metric 3.7. Comments 3.8. Problems CHAPTER Some Good Codes 4.1. Hadamard Codes and Generalizations 4.2. The Binary Golay Code 4.3. The Ternary Golay Code 4.4. Constructing Codes from Other Codes 4.5. Reed-Muller Codes 4.6. Kerdock Codes 4.7. Comments 4.8. Problems CHAPTER 5 Bounds on Codes 5.1. Introduction: The Gilbert Bound 5.2. Upper Bounds 5.3. The Linear Programming Bound 5.4. Comments 5.5. Problems CHAPTER 6 Cyclic Codes 6.1. Definitions 6.2. Generator Matrix and Check Polynomial 6.3. Zeros of a Cyclic Code 6.4. The Idempotent of a Cyclic Code 6.5. Other Representations of Cyclic Codes 6.6. BCH Codes 6.7. Decoding BCH Codes 6.8. Reed-Solomon Codes 6.9. Quadratic Residue Codes 6.10. Binary Cyclic Codes of Length 2n(n odd) 6.11. Generalized Reed–Muller Codes 6.12. Comments 6.13. Problems CHAPTER 7 Perfect Codes and Uniformly Packed Codes 7.1. Lloyd's Theorem 7.2. The Characteristic Polynomial of a Code 7.3. Uniformly Packed Codes 7.4. Examples of Unifomly Packed Codes 7.5. Nonexistence Theorems 7.6. Comments 7.7. Problems CHAPTER 8 Codes over Z 8.1. Quaternary Codes 8.2. Binary Codes Derived from Codes over Z 8.3. Galois Rings over Z 8.4. Cyclic Codes over Z 8.5. Problems CHAPTER 9 Goppa Codes 9.1. Motivation 9.2. Goppa Codes 9.3. The Minimum Distance of Goppa Codes 9.4. Asymptotic Behaviour of Goppa Codes 9.5. Decoding Goppa Codes 9.6. Generalized BCH Codes 9.7. Comments 9.8. Problems CHAPTER 10 Algebraic Geometry Codes 10.1. Introduction 10.2. Algebraic Curves 10.3. Divisors 10.4. Differentials on a Curve 10.5. The Riemann-Roch Theorem 10.6. Codes from Algebraic Curves 10.7. Some Geometric Codes 10.8. Improvement of the Gilbert-Varshamov Bound 10.9. Comments 10.10. Problems CHAPTER 11 Asymptotically Good Algebraic Codes 11.1. A Simple Nonconstructive Example 11.2. Justesen Codes 11.3. Comments 11.4. Problems CHAPTER 12 Arithmetic Codes 12.1. AN Codes 12.2. The Arithmetic and Modular Weight 12.3. Mandelbaum-Barrows Codes 12.4. Comments 12.5. Problems CHAPTER 13 Convolutional Codes 13.1. Introduction 13.2. Decoding of Convolutional Codes 13.3. An Analog of the Gilbert Bound for Some Convolutional Codes 13.4. Construction of Convolutional Codes from Cyclic Block Codes 13.5. Automorphisms of Convolutional Codes 13.6. Comments 13.7. Problems Hints and Solutions to Problems References Index
展开全部

作者简介

J.H.van Lint(1932—2004)拥有荷兰乌特勒支大学博土学位,是荷兰埃因霍温科技大学数学与计算机科学系教授,1997年退休。他是荷兰皇家艺术和科学院成员、西安交通大学荣誉教授、荷兰数学会荣誉成员等。著有多部作品。

预估到手价 ×

预估到手价是按参与促销活动、以最优惠的购买方案计算出的价格(不含优惠券部分),仅供参考,未必等同于实际到手价。

确定
快速
导航