- ISBN:9787302649700
- 装帧:平装-胶订
- 册数:暂无
- 重量:暂无
- 开本:其他
- 页数:344
- 出版时间:2024-01-01
- 条形码:9787302649700 ; 978-7-302-64970-0
本书特色
《数据科学技术:文本分析和知识图谱》是一本深入浅出的数据科学技术指南。书中详细介绍了文本分析和知识图谱等关键技术,结合典型案例展示了数据科学在安全、应急等行业的应用实践。无论你是数据科学领域的专业人士还是对数据科学感兴趣的读者,这本书都能帮助你深入了解数据科学的基本概念、方法和*新技术。通过学习《数据科学技术:文本分析和知识图谱》,你将能够掌握数据科学的核心知识,为自己的职业发展和创新项目提供有力支持。
内容简介
数据科学的关键技术包括数据存储计算、数据治理、结构化数据分析、语音分析、视觉分析、文本分析和知识图谱等方面。本书的重点是详细介绍文本分析和知识图谱方面的技术。文本分析技术主要包括文本预训练模型、多语种文本分析、文本情感分析、文本机器翻译、文本智能纠错、NL2SQL问答以及ChatGPT大语言模型等。知识图谱技术主要包括知识图谱构建和知识图谱问答等。本书将理论介绍和实践相结合,详细阐述各个技术主题的实现路线,并对应用于业界算法大赛中的技术方案和技巧进行源代码解读,帮助读者深入理解技术原理。*后,本书还介绍了文本分析和知识图谱技术在政务、公共安全、应急等多个行业中的智能应用实践案例。 《数据科学技术:文本分析和知识图谱》适合具备Python和机器学习技术基础的高等院校学生、文本分析(或者自然语言处理)以及知识图谱领域的算法工程师和研究机构的研究者阅读,也适合数据科学和人工智能领域的研究者作为参考书。
目录
1.1 数据科学的定义 1
1.1.1 数据科学的背景 1
1.1.2 数据科学的定义 1
1.2 数据科学的关键技术 3
1.2.1 数据存储计算 5
1.2.2 数据治理 12
1.2.3 结构化数据分析 28
1.2.4 语音分析 44
1.2.5 视觉分析 55
1.2.6 文本分析 61
1.2.7 知识图谱 65
1.3 本章小结 65
1.4 习题 66
1.5 本章参考文献 66
第2章 文本预训练模型 68
2.1 文本分析技术的发展史 68
2.2 Transformer模型结构 70
2.3 预训练模型的结构和变种 75
2.4 加速处理器GPU和TPU 79
2.4.1 GPU的介绍 79
2.4.2 GPU产品命名 80
2.4.3 TPU和GPU的区别 83
2.4.4 TPU的使用总结 84
2.5 预训练模型的常见问题 87
2.5.1 模型输入的常见问题 87
2.5.2 模型原理的常见问题 90
2.5.3 模型进化的常见问题 94
2.6 预训练模型的源码解读 96
2.6.1 模型架构 96
2.6.2 BertModel 96
2.6.3 BERT预训练任务 107
2.6.4 BERT 微调 112
2.7 本章小结 114
2.8 习题 114
2.9 本章参考文献 115
第3章 多语种文本分析 116
3.1 多语种文本分析背景介绍 116
3.2 多语种文本分析技术 116
3.2.1 Polyglot技术 116
3.2.2 Multilingual BERT 117
3.2.3 XLM多语言模型 117
3.2.4 XLMR多语言模型 119
3.2.5 模型实验效果 120
3.3 多语种文本分析源码解读 121
3.4 本章小结 125
3.5 习题 126
3.6 本章参考文献 126
第4章 文本情感分析 127
4.1 情感分析背景介绍 127
4.2 情感分析技术 127
4.2.1 目标和挑战 127
4.2.2 技术发展历程 129
4.2.3 情感分析的需求分析 133
4.2.4 情感分析的落地实践 134
4.2.5 模型开发平台的构建 137
4.3 情感分析比赛和方案 144
4.3.1 背景介绍 144
4.3.2 方案介绍 146
4.3.3 数据清洗和增广 147
4.3.4 多模态融合 147
4.3.5 机器学习技巧 148
4.4 情感分析源码解读 151
4.4.1 F1值适应优化技巧代码 151
4.4.2 对抗训练代码 152
4.5 本章小结 154
4.6 习题 154
4.7 本章参考文献 155
第5章 文本机器翻译 156
5.1 机器翻译背景介绍 156
5.2 机器翻译技术 157
5.2.1 基于规则的机器翻译 157
5.2.2 统计机器翻译 158
5.2.3 神经网络机器翻译 159
5.2.4 Encoder-Decoder模型 161
5.2.5 注意力机制模型 162
5.2.6 工业级神经网络实践 164
5.3 机器翻译比赛和方案 167
5.3.1 WMT21翻译任务 167
5.3.2 WMT22 翻译任务 168
5.4 机器翻译源码解读 169
5.4.1 通用框架介绍 169
5.4.2 翻译模型实现 170
5.5 本章小结 180
5.6 习题 181
5.7 本章参考文献 181
第6章 文本智能纠错 183
6.1 文本纠错背景介绍 183
6.2 文本智能纠错技术 184
6.2.1 智能纠错的意义和难点 185
6.2.2 智能纠错解决的问题 185
6.2.3 业界主流解决方案 186
6.2.4 技术方案实践 190
6.3 文本智能纠错技术 193
6.3.1 比赛介绍 193
6.3.2 校对问题思考 194
6.4 纠错方案和源码解读 195
6.4.1 GECToR原理解读 195
6.4.2 MacBERT原理解读 199
6.4.3 PERT原理解读 200
6.4.4 PLOME原理解读 202
6.4.5 比赛方案 203
6.5 本章小结 204
6.6 习题 205
6.7 本章参考文献 205
第7章 知识图谱构建 206
7.1 知识图谱背景介绍 206
7.1.1 知识和知识图谱 206
7.1.2 知识获取、知识抽取与信息抽取
的区别207
7.1.3 知识图谱构建范式 208
7.2 非结构化信息抽取技术 211
7.2.1 信息抽取框架 211
7.2.2 命名实体识别 212
7.2.3 关系识别 213
7.2.4 事件抽取 215
7.3 生成式统一模型抽取技术 216
7.4 模型源码解读 220
7.5 本章小结 224
7.6 习题 224
7.7 本章参考文献 225
第8章 知识图谱问答 226
8.1 背景介绍 226
8.2 知识图谱问答技术 229
8.2.1 信息检索方法 229
8.2.2 语义解析方法 231
8.3 方案和源码解读 233
8.3.1 NL2SPARQL 233
8.3.2 NL2SPARQL语义解析方案 234
8.3.3 T5、BART、UniLM模型简介 234
8.3.4 T5、BART、UniLM方案 236
8.3.5 训练T5、BART、UniLM
生成模型 237
8.3.6 语义排序方案和代码 239
8.3.7 SPARQL修正代码 241
8.4 本章小结 245
8.5 习题 245
第9章 结构化知识NL2SQL问答 246
9.1 NL2SQL背景介绍 246
9.2 NL2SQL技术 249
9.2.1 NL2SQL技术路线 249
9.2.2 NL2SQL项目实践 255
9.3 NL2SQL比赛和方案 256
9.4 NL2SQL源码解读 259
9.5 本章小结 269
9.6 习题 269
9.7 本章参考文献 270
第10章 ChatGPT大语言模型 271
10.1 ChatGPT介绍 271
10.1.1 ChatGPT的定义和背景 271
10.1.2 ChatGPT的发展历程 272
10.2 GPT模型概述 272
10.2.1 GPT-1模型的原理 272
10.2.2 GPT-2模型的原理 273
10.2.3 GPT-3模型的原理 275
10.3 ChatGPT的实现原理 277
10.3.1 大模型的微调技术 277
10.3.2 ChatGPT的能力来源 278
10.3.3 ChatGPT的预训练和微调 279
10.4 ChatGPT的应用 282
10.4.1 ChatGPT提示工程 282
10.4.2 ChatGPT应用场景 283
10.4.3 ChatGPT的优缺点 284
10.5 开源大模型 285
10.5.1 ChatGLM大模型 285
10.5.2 LLaMA大模型 288
10.6 本章小结 294
10.7 习题 294
10.8 本章参考文献 295
第11章 行业实践案例 296
11.1 智慧政务实践案例 296
11.1.1 案例背景 296
11.1.2 解决方案 297
11.1.3 系统架构和实现 299
11.1.4 案例总结 307
11.2 公共安全实践案例 308
11.2.1 案例背景 308
11.2.2 解决方案 309
11.2.3 系统架构及实现 311
11.2.4 案例总结 317
11.3 智能应急实践案例 318
11.3.1 案例背景 319
11.3.2 解决方案 320
11.3.3 系统架构及实现 321
11.3.4 案例总结 332
11.4 本章小结 334
11.5 习题 334
作者简介
苏海波
清华大学电子工程系博士,副研究员,在文本分析、知识图谱、大模型等人工智能方向拥有超过十年的研发实践经验。多篇SCI和EI论文发表于国外**学术会议和期刊,获得国家发明专利20余项,曾担任科技部重点研发计划子课题负责人。获得2019年和2020年北京市科学技术进步奖,带领团队获得多个业界知名算法技术评测的冠军和亚军。
刘译璟
北京大学博士、正高级工程师,现任北京百分点科技集团股份有限公司CTO。在云计算、大数据、人工智能等领域拥有15年研究和工作经验。曾荣获北京市科学技术奖等奖项,承担国家科技部重点研发计划项目2项,参与多个国家自然科学基金项目,多篇论文曾发表于国内外学术刊物。
易显维
中国地质大学硕士,拥有12年AI算法研发岗相关研发管理经验。在数据挖掘、OCR、文本分析等方面拥有丰富的实践经验,在众多知名企事业单位举办的高水平机器学习算法竞赛中累计获奖20余次。
苏 萌
美国康奈尔大学博士,研究员, 现任北京百分点科技集团股份有限公司董事长兼CEO、北京大学国家发展研究院实践教授、北京大学光华管理学院实践教授、北京市商会副会长、海淀区工商联副主席、海淀区政协委员、国务院学位委员会全国应用统计专业 “大数据专家委员会" 委员等。曾执教于北京大学光华管理学院,任副系主任、博士生导师。
-
有限与无限的游戏:一个哲学家眼中的竞技世界
¥37.4¥68.0 -
硅谷之火-人与计算机的未来
¥14.3¥39.8 -
全图解零基础word excel ppt 应用教程
¥12.0¥48.0 -
机器学习
¥59.4¥108.0 -
深度学习的数学
¥43.5¥69.0 -
智能硬件项目教程:基于ARDUINO(第2版)
¥37.7¥65.0 -
元启发式算法与背包问题研究
¥38.2¥49.0 -
AI虚拟数字人:商业模式+形象创建+视频直播+案例应用
¥62.9¥89.8 -
UNIX环境高级编程(第3版)
¥164.9¥229.0 -
剪映AI
¥52.8¥88.0 -
深度学习高手笔记 卷2:经典应用
¥90.9¥129.8 -
纹样之美:中国传统经典纹样速查手册
¥77.4¥109.0 -
UG NX 12.0数控编程
¥24.8¥45.0 -
MATLAB计算机视觉与深度学习实战(第2版)
¥90.9¥128.0 -
界面交互设计理论研究
¥30.8¥56.0 -
UN NX 12.0多轴数控编程案例教程
¥25.8¥38.0 -
微机组装与系统维护技术教程(第二版)
¥37.8¥43.0 -
Go 语言运维开发 : Kubernetes 项目实战
¥48.2¥79.0 -
明解C语言:实践篇
¥62.9¥89.8 -
Linux服务器架设实战(Linux典藏大系)
¥84.5¥119.0