PyTorch深度学习指南:计算机视觉 卷II
- ISBN:9787111749721
- 装帧:平装-胶订
- 册数:暂无
- 重量:暂无
- 开本:16开
- 页数:236
- 出版时间:2024-04-01
- 条形码:9787111749721 ; 978-7-111-74972-1
本书特色
国外Pytorch深度学习畅销书 全彩印刷
作者拥有20余年从业经验
“PyTorch深度学习指南”丛书循序渐进地详细讲解了与深度学习相关的重要概念、算法和模型,并着重展示了PyTorch是如何实现这些算法和模型的。其共分三卷:编程基础、计算机视觉、序列与自然语言处理。
本书适用于对深度学习感兴趣,并希望使用PyTorch实现深度学习的Python程序员阅读。
以下是部分国外读者书评
TS.:这本书不只是把代码推到你面前,它解释了事物在引擎盖下是如何工作的。我非常喜欢这种风格,所以我把这本书及其第二卷作为我的ECE655高级GPU编程和深度学习课程的教材。
Nenad:这本书值得诺贝尔教学奖!到目前为止,这是我找到的*好的深度学习入门书。它不仅出色地解释了这么多概念,而且语言如此流畅,以至于我从未被卡住。我也从来没有读过一本书,像作者在读我的心一样,问答式的写作方式被如此恰当地使用和适时地运用。每本书都应该这样写(例如,如果你是**次学习DL,我发现这本书比Fast AI好几个数量级)。我把这本书重读了好几遍,只希望计算机视觉的续集能很快问世。
内容简介
“PyTorch深度学习指南”丛书循序渐进地详细讲解了与深度学习相关的重要概念、算法和模型,并着重展示了PyTorch是如何实现这些算法和模型的。其共分三卷:编程基础、计算机视觉、序列与自然语言处理。
本书为该套丛书的第二卷:计算机视觉。本书主要介绍了深度模型、激活函数和特征空间;Torchvision、数据集、模型和转换;卷积神经网络、丢弃和学习率调度器;迁移学习和微调流行的模型(ResNet、Inception等)等内容。
本书适用于对深度学习感兴趣,并希望使用PyTorch实现深度学习的Python程序员阅读学习。
目录
致 谢
关于作者
译者序
常见问题
为什么选择PyTorch?
为什么选择这套书?
谁应该读这套书?
我需要知道什么?
如何阅读这套书?
下一步是什么?
设置指南
官方资料库
环境
谷歌Colab
Binder
本地安装
继续
第4章 图像分类
剧透
Jupyter Notebook
导入
图像分类
数据生成
NCHW与NHWC
Torchvision
数据集
模型
转换
图像上的转换
张量上的转换
组合转换
数据准备
数据集转换
SubsetRandomSampler
数据增强转换
WeightedRandomSampler
种子和更多(种子)
小结
作为特征的像素
浅层模型
符号
模型配置
模型训练
深层模型
模型配置
模型训练
给我看看数学
给我看看代码
作为像素的权重
激活函数
Sigmoid
双曲正切(TanH)
整流线性单元(ReLU)
泄漏ReLU
参数ReLU(PReLU)
深度模型
模型配置
模型训练
再给我看看数学
归纳总结
回顾
奖励章 特征空间
二维特征空间
转换
二维模型
决策边界,激活方式
更多的函数,更多的边界
更多的层,更多的边界
更多的维度,更多的边界
回顾
第5章 卷积
剧透
Jupyter Notebook
导入
卷积
滤波器/内核
卷积运算
四处移动
形状
在PyTorch中进行卷积
步幅
填充
真正的滤波器
池化
展平
维度
典型架构
LeNet-5
多类分类问题
数据生成
数据准备
损失
分类损失总结
模型配置
模型训练
可视化滤波器和其他
可视化滤波器
钩子
可视化特征图
可视化分类器层
准确率
加载器应用
归纳总结
回顾
第6章 石头、剪刀、布
剧透
Jupyter Notebook
导入
关于石头、剪刀、布
石头、剪刀、布数据集
数据准备
ImageFolder
标准化
真实数据集
三通道卷积
更高级的模型
丢弃
二维丢弃
模型配置
优化器
学习率
模型训练
准确率
正则化效果
可视化滤波器
学习率
寻找LR
自适应学习率
随机梯度下降(SGD)
学习率调度器
验证损失调度器
自适应与循环
归纳总结
回顾
第7章 迁移学习
剧透
Jupyter Notebook
导入
迁移学习
ImageNet
ImageNet大规模视觉识别挑战赛(ILSVRC)
ILSVRC-2012
ILSVRC-2014
ILSVRC-2015
对比各架构
实践中的迁移学习
预训练模型
模型配置
数据准备
模型训练
生成特征数据集
顶层模型
辅助分类器(侧头)
1×1卷积
Inception模块
批量归一化
游程(running)统计
评估阶段
动量
BatchNorm2d
其他归一化
小结
残差连接
学习恒等
捷径的力量
残差块
归纳总结
微调
特征提取
回顾
额外章 梯度消失和爆炸
剧透
Jupyter Notebook
导入
梯度消失和爆炸
梯度消失
球数据集和块模型
权重、激活和梯度
初始化方案
批量归一化
梯度爆炸
数据生成和准备
模型配置和训练
梯度裁剪
模型配置和训练
用钩子裁剪
回顾
作者简介
丹尼尔?沃格特?戈多伊是一名数据科学家、开发人员、作家和教师。自2016年以来,他一直在柏林历史*悠久的训练营Data Science Retreat讲授机器学习和分布式计算技术,帮助数百名学生推进职业发展。
丹尼尔还是两个Python软件包——HandySpark和DeepReplay的主要贡献者。
他拥有在多个行业20多年的工作经验,这些行业包括银行、政府、金融科技、零售和移动出行等。
-
有限与无限的游戏:一个哲学家眼中的竞技世界
¥37.4¥68.0 -
硅谷之火-人与计算机的未来
¥14.3¥39.8 -
全图解零基础word excel ppt 应用教程
¥12.0¥48.0 -
机器学习
¥59.4¥108.0 -
深度学习的数学
¥43.5¥69.0 -
智能硬件项目教程:基于ARDUINO(第2版)
¥31.9¥65.0 -
元启发式算法与背包问题研究
¥38.2¥49.0 -
AI虚拟数字人:商业模式+形象创建+视频直播+案例应用
¥62.9¥89.8 -
UNIX环境高级编程(第3版)
¥164.9¥229.0 -
剪映AI
¥52.8¥88.0 -
深度学习高手笔记 卷2:经典应用
¥90.9¥129.8 -
纹样之美:中国传统经典纹样速查手册
¥77.4¥109.0 -
UG NX 12.0数控编程
¥24.8¥45.0 -
MATLAB计算机视觉与深度学习实战(第2版)
¥90.9¥128.0 -
界面交互设计理论研究
¥30.8¥56.0 -
UN NX 12.0多轴数控编程案例教程
¥25.8¥38.0 -
微机组装与系统维护技术教程(第二版)
¥37.8¥43.0 -
Go 语言运维开发 : Kubernetes 项目实战
¥48.2¥79.0 -
明解C语言:实践篇
¥62.9¥89.8 -
Linux服务器架设实战(Linux典藏大系)
¥84.5¥119.0