×
超值优惠券
¥50
100可用 有效期2天

全场图书通用(淘书团除外)

关闭
暂无评论
图文详情
  • ISBN:9787111749721
  • 装帧:平装-胶订
  • 册数:暂无
  • 重量:暂无
  • 开本:16开
  • 页数:236
  • 出版时间:2024-04-01
  • 条形码:9787111749721 ; 978-7-111-74972-1

本书特色

国外Pytorch深度学习畅销书 全彩印刷
作者拥有20余年从业经验
“PyTorch深度学习指南”丛书循序渐进地详细讲解了与深度学习相关的重要概念、算法和模型,并着重展示了PyTorch是如何实现这些算法和模型的。其共分三卷:编程基础、计算机视觉、序列与自然语言处理。
本书适用于对深度学习感兴趣,并希望使用PyTorch实现深度学习的Python程序员阅读。

以下是部分国外读者书评
TS.:这本书不只是把代码推到你面前,它解释了事物在引擎盖下是如何工作的。我非常喜欢这种风格,所以我把这本书及其第二卷作为我的ECE655高级GPU编程和深度学习课程的教材。
Nenad:这本书值得诺贝尔教学奖!到目前为止,这是我找到的*好的深度学习入门书。它不仅出色地解释了这么多概念,而且语言如此流畅,以至于我从未被卡住。我也从来没有读过一本书,像作者在读我的心一样,问答式的写作方式被如此恰当地使用和适时地运用。每本书都应该这样写(例如,如果你是**次学习DL,我发现这本书比Fast AI好几个数量级)。我把这本书重读了好几遍,只希望计算机视觉的续集能很快问世。

内容简介

“PyTorch深度学习指南”丛书循序渐进地详细讲解了与深度学习相关的重要概念、算法和模型,并着重展示了PyTorch是如何实现这些算法和模型的。其共分三卷:编程基础、计算机视觉、序列与自然语言处理。
本书为该套丛书的第二卷:计算机视觉。本书主要介绍了深度模型、激活函数和特征空间;Torchvision、数据集、模型和转换;卷积神经网络、丢弃和学习率调度器;迁移学习和微调流行的模型(ResNet、Inception等)等内容。
本书适用于对深度学习感兴趣,并希望使用PyTorch实现深度学习的Python程序员阅读学习。

目录

前 言
致 谢
关于作者
译者序
常见问题 
  为什么选择PyTorch? 
  为什么选择这套书? 
  谁应该读这套书? 
  我需要知道什么? 
  如何阅读这套书? 
  下一步是什么? 
设置指南 
  官方资料库 
  环境 
    谷歌Colab 
    Binder 
    本地安装 
  继续 
第4章 图像分类 
  剧透 
  Jupyter Notebook 
    导入 
  图像分类 
    数据生成 
    NCHW与NHWC 
  Torchvision 
    数据集 
    模型 
    转换 
    图像上的转换 
    张量上的转换 
    组合转换 
  数据准备 
    数据集转换 
    SubsetRandomSampler 
    数据增强转换 
    WeightedRandomSampler 
    种子和更多(种子) 
    小结 
    作为特征的像素 
  浅层模型 
    符号 
    模型配置 
    模型训练 
  深层模型 
    模型配置 
    模型训练 
    给我看看数学 
    给我看看代码 
    作为像素的权重 
  激活函数 
    Sigmoid 
    双曲正切(TanH) 
    整流线性单元(ReLU) 
    泄漏ReLU 
    参数ReLU(PReLU) 
  深度模型 
    模型配置 
    模型训练 
    再给我看看数学 
  归纳总结 
  回顾 
奖励章 特征空间 
  二维特征空间 
  转换 
  二维模型 
  决策边界,激活方式 
  更多的函数,更多的边界 
  更多的层,更多的边界 
  更多的维度,更多的边界 
  回顾 
第5章 卷积 
  剧透 
  Jupyter Notebook 
    导入 
  卷积 
    滤波器/内核 
    卷积运算 
    四处移动 
    形状 
    在PyTorch中进行卷积 
    步幅 
    填充 
    真正的滤波器 
  池化 
  展平 
  维度 
  典型架构 
    LeNet-5 
  多类分类问题 
    数据生成 
    数据准备 
    损失 
    分类损失总结 
    模型配置 
    模型训练 
  可视化滤波器和其他 
    可视化滤波器 
    钩子 
    可视化特征图 
    可视化分类器层 
    准确率 
    加载器应用 
  归纳总结 
  回顾 
第6章 石头、剪刀、布 
  剧透 
  Jupyter Notebook 
    导入 
  关于石头、剪刀、布 
    石头、剪刀、布数据集 
  数据准备 
    ImageFolder 
    标准化 
    真实数据集 
  三通道卷积 
  更高级的模型 
  丢弃 
    二维丢弃 
  模型配置 
    优化器 
    学习率 
  模型训练 
    准确率 
    正则化效果 
    可视化滤波器 
  学习率 
    寻找LR 
    自适应学习率 
    随机梯度下降(SGD) 
    学习率调度器 
    验证损失调度器 
    自适应与循环 
  归纳总结 
  回顾
第7章 迁移学习
  剧透 
  Jupyter Notebook 
    导入 
  迁移学习 
  ImageNet 
  ImageNet大规模视觉识别挑战赛(ILSVRC) 
    ILSVRC-2012 
    ILSVRC-2014 
    ILSVRC-2015 
  对比各架构 
  实践中的迁移学习 
    预训练模型 
    模型配置 
    数据准备 
    模型训练 
    生成特征数据集 
    顶层模型 
  辅助分类器(侧头) 
  1×1卷积 
  Inception模块 
  批量归一化 
    游程(running)统计 
    评估阶段 
    动量 
    BatchNorm2d 
    其他归一化 
    小结 
  残差连接 
    学习恒等 
    捷径的力量 
    残差块 
  归纳总结 
    微调 
    特征提取 
  回顾 
额外章 梯度消失和爆炸 
  剧透 
  Jupyter Notebook 
    导入 
  梯度消失和爆炸 
    梯度消失 
    球数据集和块模型 
    权重、激活和梯度 
    初始化方案 
    批量归一化 
    梯度爆炸 
    数据生成和准备 
    模型配置和训练 
    梯度裁剪 
    模型配置和训练 
    用钩子裁剪 
  回顾
展开全部

作者简介

丹尼尔?沃格特?戈多伊是一名数据科学家、开发人员、作家和教师。自2016年以来,他一直在柏林历史*悠久的训练营Data Science Retreat讲授机器学习和分布式计算技术,帮助数百名学生推进职业发展。
丹尼尔还是两个Python软件包——HandySpark和DeepReplay的主要贡献者。
他拥有在多个行业20多年的工作经验,这些行业包括银行、政府、金融科技、零售和移动出行等。

预估到手价 ×

预估到手价是按参与促销活动、以最优惠的购买方案计算出的价格(不含优惠券部分),仅供参考,未必等同于实际到手价。

确定
快速
导航