Statistical learning from a regression perspective
1星价
¥125.3
(7.0折)
2星价¥125.3
定价¥179.0
暂无评论
图文详情
- ISBN:9787523211328
- 装帧:平装-胶订
- 册数:暂无
- 重量:暂无
- 开本:24cm
- 页数:26,433页
- 出版时间:2024-03-01
- 条形码:9787523211328 ; 978-7-5232-1132-8
内容简介
这本统计学习的教材把关注点集中在给定一组预测变量并且在数据分析开始之前缺乏可以指定的可靠模型时的响应变量的条件分布上。 与现代数据分析一致,它强调适当的统计学习数据分析以综合方式依赖于健全的数据收集、智能数据管理、适当的统计程序和对结果的可理解的解释。监督学习可被统一视为回归分析的一种形式。 通过大量实际应用及其相关的 R 代码来说明关键概念和过程,着眼于实际意义。 计算机科学和统计学的日益融合在这本教材中得到了很好的体现。
目录
1 Statistical Learning as a Regression Problem
1.1 Getting Started
1.2 Setting the Regression Context
1.3 Revisiting the Ubiquitous Linear Regression Model
1.3.1 Problems in Practice
1.4 Working with Statistical Models that are Wrong
1.4.1 An Alternative Approach to Regression
1.4.2 More on Statistical Inference with Wrong Models
1.4.3 Introduction to Sandwich Standard Errors
1.4.4 Introduction to Conformal Inference
1.4.5 Introduction to the Nonparametric Bootstrap
1.4.6 Wrong Regression Models with Binary Response Variables
1.5 The Transition to Statistical Learning
1.5.1 Models Versus Algorithms
1.6 Some Initial Concepts
1.6.1 Overall Goals of Statistical Learning
1.6.2 Forecasting with Supervised Statistical Learning
1.6.3 Overfitting
1.6.4 Data Snooping
1.6.5 Some Constructive Responses to Overfitting and Data Snooping
1.6.6 Loss Functions and Related Concepts
1.6.7 The Bias-Variance Tradeoff
1.6.8 Linear Estimators
1.6.9 Degrees of Freedom
1.6.10 Basis Functions
1.6.11 The Curse of Dimensionality
1.7 Statistical Learning in Context
Endnotes
References
2 Splines, Smoothers, and Kernels
2.1 Introduction
2.2 Regression Splines
2.2.1 Piecewise Linear Population Approximations
2.2.2 Polynomial Regression Splines
2.2.3 Natural Cubic Splines
2.2.4 B-Splines
2.3 Penalized Smoothing
2.3.1 Shrinkage and Regularization
2.4 Penalized Regression Splines
2.4.1 An Application
2.5 Smoothing Splines
2.5.1 A Smoothing Splines Illustration
2.6 Locally Weighted Regression as a Smoother
2.6.1 Nearest Nei or Methods
2.6.2 Locally Weighted Regression
2.7 Smoothers for Multiple Predictors
2.7.1 Smoothing in Two Dimensions
2.7.2 The Generalized Additive Model
2.8 Smoothers with Categorical Variables
2.8.1 An Illustration Using the Generalized Additive Model with a Binary Outcome
2.9 An Illustration of Statistical Inference After Model Selection
2.9.1 Level I Versus Level II Summary
2.10 Kernelized Regression
2.10.1 Radial Basis Kernel
2.10.2 ANOVA Radial Basis Kernel
2.10.3 A Kernel Regression Application
2.11 Summary and Conclusions
Endnotes
References
3 Classification and Regression Trees (CART)
3.1 Introduction
3.2 An Introduction to Recursive Partitioning in CART
3.3 The Basic Ideas in More Depth
3.3.1 Tree Diagrams for Showing What the Greedy Algorithm Determined
3.3.2 An Initial Application
3.3.3 Classification and Forecasting with CART
3.3.4 Confusion Tables
3.3.5 CART as an Adaptive Nearest Nei or Method
3.4 The Formalities of Splitting a Node
3.5 An Illustrative Prison Inmate Risk Assessment Using CART ...
3.6 Classification Errors and Costs
3.6.1 Default Costs in CART
3.6.2 Prior Probabilities and Relative Misclassification Costs
3.7 Varying the Prior and the Complexity Parameter
3.8 An Example with Three Response Categories
3.9 Regression Trees
3.9.1 A CART Application for the Correlates of a Student's GPA in High School
3.10 Pruning
3.11 Missing Data
3.11.1 Missing Data with CART
3.12 More on CART Instability
3.13 Summary of Statistical Inference with CART
3.13.1 Summary of Statistical Inference for CART Forecasts
3.14 Overall Summary and Conclusions
Exercises
Endnotes
References
4 Bagging
4.1 Introduction
4.2 The Bagging Algorithm
4.3 Some Bagging Details
4.3.1 Revisiting the CART Instability Problem
4.3.2 Resampling Methods for Bagging
4.3.3 Votes Over Trees and Probabilities
4.3.4 Forecasting and Imputation
4.3.5 Bagging Estimation and Statistical Inference
4.3.6 Margins for Classification
4.3.7 Using Out-of-Bag Observations as Test Data
4.3.8 Baggi
展开全部
作者简介
理查德·伯克(Richard A. Berk)现在是宾夕法尼亚大学统计系教授,加州大学洛杉矶分校统计学杰出荣休教授。他研究领域广泛,在社会科学和自然科学均有很深的造诣。他是美国统计协会和美国科学促进会的会士。
本类五星书
本类畅销
-
乡村振兴新技术:新时代农村短视频编辑技术基础入门
¥12.8¥32.0 -
AI绘画+AI摄影+AI短视频从入门到精通
¥45.5¥79.8 -
企业AI之旅
¥43.5¥79.0 -
机器学习
¥59.4¥108.0 -
基于知识蒸馏的图像去雾技术
¥61.6¥88.0 -
软件设计的哲学(第2版)
¥51.0¥69.8 -
智能算法优化及其应用
¥52.4¥68.0 -
Photoshop图像处理
¥25.5¥49.0 -
R语言医学数据分析实践
¥72.3¥99.0 -
大模型推荐系统:算法原理、代码实战与案例分析
¥62.3¥89.0 -
剪映 从入门到精通
¥25.7¥59.8 -
游戏造梦师----游戏场景开发与设计
¥67.6¥98.0 -
SAR图像处理与检测
¥35.4¥49.8 -
人工智能
¥29.4¥42.0 -
中文版PHOTOSHOP 2024+AI修图入门教程
¥59.3¥79.0 -
WPS办公软件应用
¥25.2¥36.0 -
格拉斯曼流行学习及其在图像集分类中的应用
¥13.7¥28.0 -
轻松上手AIGC:如何更好地向CHATGPT提问
¥40.3¥62.0 -
元宇宙的理想与现实:数字科技大成的赋能与治理逻辑
¥61.6¥88.0 -
云原生安全:攻防与运营实战
¥66.8¥89.0