
包邮Statistical learning from a regression perspective
1星价
¥139.6
(7.8折)
2星价¥139.6
定价¥179.0

暂无评论
图文详情
- ISBN:9787523211328
- 装帧:平装-胶订
- 册数:暂无
- 重量:暂无
- 开本:24cm
- 页数:26,433页
- 出版时间:2024-03-01
- 条形码:9787523211328 ; 978-7-5232-1132-8
内容简介
这本统计学习的教材把关注点集中在给定一组预测变量并且在数据分析开始之前缺乏可以指定的可靠模型时的响应变量的条件分布上。 与现代数据分析一致,它强调适当的统计学习数据分析以综合方式依赖于健全的数据收集、智能数据管理、适当的统计程序和对结果的可理解的解释。监督学习可被统一视为回归分析的一种形式。 通过大量实际应用及其相关的 R 代码来说明关键概念和过程,着眼于实际意义。 计算机科学和统计学的日益融合在这本教材中得到了很好的体现。
目录
1 Statistical Learning as a Regression Problem
1.1 Getting Started
1.2 Setting the Regression Context
1.3 Revisiting the Ubiquitous Linear Regression Model
1.3.1 Problems in Practice
1.4 Working with Statistical Models that are Wrong
1.4.1 An Alternative Approach to Regression
1.4.2 More on Statistical Inference with Wrong Models
1.4.3 Introduction to Sandwich Standard Errors
1.4.4 Introduction to Conformal Inference
1.4.5 Introduction to the Nonparametric Bootstrap
1.4.6 Wrong Regression Models with Binary Response Variables
1.5 The Transition to Statistical Learning
1.5.1 Models Versus Algorithms
1.6 Some Initial Concepts
1.6.1 Overall Goals of Statistical Learning
1.6.2 Forecasting with Supervised Statistical Learning
1.6.3 Overfitting
1.6.4 Data Snooping
1.6.5 Some Constructive Responses to Overfitting and Data Snooping
1.6.6 Loss Functions and Related Concepts
1.6.7 The Bias-Variance Tradeoff
1.6.8 Linear Estimators
1.6.9 Degrees of Freedom
1.6.10 Basis Functions
1.6.11 The Curse of Dimensionality
1.7 Statistical Learning in Context
Endnotes
References
2 Splines, Smoothers, and Kernels
2.1 Introduction
2.2 Regression Splines
2.2.1 Piecewise Linear Population Approximations
2.2.2 Polynomial Regression Splines
2.2.3 Natural Cubic Splines
2.2.4 B-Splines
2.3 Penalized Smoothing
2.3.1 Shrinkage and Regularization
2.4 Penalized Regression Splines
2.4.1 An Application
2.5 Smoothing Splines
2.5.1 A Smoothing Splines Illustration
2.6 Locally Weighted Regression as a Smoother
2.6.1 Nearest Nei or Methods
2.6.2 Locally Weighted Regression
2.7 Smoothers for Multiple Predictors
2.7.1 Smoothing in Two Dimensions
2.7.2 The Generalized Additive Model
2.8 Smoothers with Categorical Variables
2.8.1 An Illustration Using the Generalized Additive Model with a Binary Outcome
2.9 An Illustration of Statistical Inference After Model Selection
2.9.1 Level I Versus Level II Summary
2.10 Kernelized Regression
2.10.1 Radial Basis Kernel
2.10.2 ANOVA Radial Basis Kernel
2.10.3 A Kernel Regression Application
2.11 Summary and Conclusions
Endnotes
References
3 Classification and Regression Trees (CART)
3.1 Introduction
3.2 An Introduction to Recursive Partitioning in CART
3.3 The Basic Ideas in More Depth
3.3.1 Tree Diagrams for Showing What the Greedy Algorithm Determined
3.3.2 An Initial Application
3.3.3 Classification and Forecasting with CART
3.3.4 Confusion Tables
3.3.5 CART as an Adaptive Nearest Nei or Method
3.4 The Formalities of Splitting a Node
3.5 An Illustrative Prison Inmate Risk Assessment Using CART ...
3.6 Classification Errors and Costs
3.6.1 Default Costs in CART
3.6.2 Prior Probabilities and Relative Misclassification Costs
3.7 Varying the Prior and the Complexity Parameter
3.8 An Example with Three Response Categories
3.9 Regression Trees
3.9.1 A CART Application for the Correlates of a Student's GPA in High School
3.10 Pruning
3.11 Missing Data
3.11.1 Missing Data with CART
3.12 More on CART Instability
3.13 Summary of Statistical Inference with CART
3.13.1 Summary of Statistical Inference for CART Forecasts
3.14 Overall Summary and Conclusions
Exercises
Endnotes
References
4 Bagging
4.1 Introduction
4.2 The Bagging Algorithm
4.3 Some Bagging Details
4.3.1 Revisiting the CART Instability Problem
4.3.2 Resampling Methods for Bagging
4.3.3 Votes Over Trees and Probabilities
4.3.4 Forecasting and Imputation
4.3.5 Bagging Estimation and Statistical Inference
4.3.6 Margins for Classification
4.3.7 Using Out-of-Bag Observations as Test Data
4.3.8 Baggi
展开全部
作者简介
理查德·伯克(Richard A. Berk)现在是宾夕法尼亚大学统计系教授,加州大学洛杉矶分校统计学杰出荣休教授。他研究领域广泛,在社会科学和自然科学均有很深的造诣。他是美国统计协会和美国科学促进会的会士。
本类五星书
浏览历史
本类畅销
-
造神:人工智能神话的起源和破除 (精装)
¥32.7¥88.0 -
大数据技术导论(第2版)
¥28.9¥41.0 -
人人都能学AI
¥40.4¥68.0 -
人工智能
¥20.3¥55.0 -
数据结构基础(C语言版)(第2版)
¥41.7¥49.0 -
系统架构设计师教程(第2版)(全国计算机技术与软件专业技术资格(水平)考试指定用
¥102.7¥158.0 -
过程控制技术(第2版高职高专规划教材)
¥27.6¥38.0 -
WPS OFFICE完全自学教程(第2版)
¥97.3¥139.0 -
智能视频目标检测与识别技术
¥43.5¥59.0 -
人工智能基础及应用
¥37.0¥48.0 -
深入浅出软件架构
¥117.2¥186.0 -
工业互联网安全创新技术及应用
¥79.4¥128.0 -
计算机网络基础(微课版)
¥39.0¥55.0 -
零信任架构
¥62.4¥89.0 -
剪映:即梦AI绘画与视频制作从新手到高手
¥66.0¥89.0 -
红蓝攻防 技术与策略(原书第3版)
¥95.9¥139.0 -
Web前端开发基础
¥37.5¥57.0 -
软件设计的哲学(第2版)
¥52.0¥69.8 -
人工智能的底层逻辑
¥58.7¥79.0 -
软件工程理论与案例
¥63.4¥99.0