×
物理学家用的张量和群论导论

物理学家用的张量和群论导论

1星价 ¥42.1 (8.6折)
2星价¥42.1 定价¥49.0
暂无评论
图文详情
  • ISBN:9787510070266
  • 装帧:一般胶版纸
  • 册数:暂无
  • 重量:暂无
  • 开本:32开
  • 页数:242
  • 出版时间:2014-03-01
  • 条形码:9787510070266 ; 978-7-5100-7026-6

本书特色

this book is composed of two parts: part i (chaps. i through 3) is an introduction to tensors and their physical applications, and part ii (chaps. 4 through 6) introduces group theory and intertwines it with the earlier material. both parts are written at the advanced-undergraduate/beginning graduate level, although in the course of' part ii the sophistication level rises somewhat. though the two parts differ somewhat in flavor,l have aimed in both to fill a (perceived) gap in the literaiure by connecting   the component formalisms prevalent in physics calculations to the abstract but more conceptual formulations found in the math literature. my firm beliefis that we need to see tensors and groups in coordinates to get a sense of how they work, but also need an abstract formulation to understand their essential nature and organize our thinking about them.

内容简介

这是一部讲述张量和群论的物理学专业的教程,用直观、严谨的方法介绍张量和群论以及其在理论物理和应用数学的重要性。本书旨在用一种比较独特的框架,揭开张量的神秘面纱,使得读者在经典物理和量子物理的背景理解它。将物理计算中的许多流形公式和数学中的抽象的或者更加概念性公式的联系起来,对张量和群论的的人来说,这项工作是很欢迎的。物理和应用数学专业的高年级本科生和研究生都将受益于本书。读者对象:数学、应用数学以及物理专业的本科生、研究生和相关科研人员。

目录

part i linear algebra and tensors
i a quicklntroduction to tensors
2 vectorspaces
2.1 definition and examples
2.2 span,linearlndependence,and bases
2.3 components
2.4 linearoperators
2.5 duaispaces
2.6 non-degenerate hermitian forms
2.7 non-degenerate hermitian forms and dual spaces
2.8 problems
3 tensors
3.1 definition and examples
3.2 changeofbasis
3.3 active and passive transformations
3.4 the tensor product-definition and properties
3.5 tensor products of v and v*
3.6 applications ofthe tensor product in classical physics
3.7 applications of the tensor product in quantum physics
3.8 symmetric tensors
3.9 antisymmetric tensors
3.10 problems

partll grouptheory
4 groups, lie groups,and lie algebras
4.1 groups-definition and examples
4.2 the groups ofclassical and quantum physics
4.3 homomorphismandlsomorphism
4.4 from lie groups to lie algebras
4.5 lie algebras-definition,properties,and examples
4.6 the lie algebras ofclassical and quantum physics
4.7 abstractliealgebras
4.8 homomorphism andlsomorphism revisited
4.9 problems
5 basic representation theory
5.1 representations: definitions and basic examples
5.2 furtherexamples
5.3 tensorproduet representations
5.4 symmetric and antisymmetric tensor product representations
5.5 equivalence ofrepresentations 
5.6 direct sums andlrreducibility
5.7 moreonlrreducibility
5.8 thelrreducible representations ofsu(2),su(2) and s0(3)
5.9 reairepresentations andcomplexifications
5.10 the irreducible representations of st(2, c)nk, sl(2, c) ands0(3,1)o
5.11 irreducibility and the representations of 0(3, 1) and its double covers
5.12 problems
6 the wigner-eckart theorem and other applications
6.1 tensor operators, spherical tensors and representation operators
6.2 selection rules and the wigner-eckart theorem
6.3 gamma matrices and dirac bilinears
6.4 problems
appendix  complexifications of real lie algebras and the tensor
product decomposition ofsl(2,c)rt representations
a.1 direct sums and complexifications oflie algebras
a.2 representations of complexified lie algebras and the tensor
product decomposition ofst(2,c)r representations
references
index

展开全部

作者简介

Nadir Jeevanjee是国际知名学者,在数学和物理学界享有盛誉。本书凝聚了作者多年科研和教学成果,适用于科研工作者、高校教师和研究生。

预估到手价 ×

预估到手价是按参与促销活动、以最优惠的购买方案计算出的价格(不含优惠券部分),仅供参考,未必等同于实际到手价。

确定
快速
导航