暂无评论
图文详情
- ISBN:9787030587237
- 装帧:一般胶版纸
- 册数:暂无
- 重量:暂无
- 开本:25cm
- 页数:401页
- 出版时间:2019-01-01
- 条形码:9787030587237 ; 978-7-03-058723-7
内容简介
本书的主要内容包括:光学相干断层成像(OCT)技术及其在视网膜上的临床应用;视网膜OCT图像分析预处理技术的主要步骤及算法;OCT图像中视网膜解剖结构的自动检测和分析技术;OCT图像中视网膜病变的自动检测和分析技术;多模态视网膜图像分析技术;以及OCT成像及分析技术的*新进展和展望。
目录
Contents
Preface
Chapter 1 Clinical Applications of Retinal Optical Coherence
1.1 Anatomy of the Eye and Retina 1
1.1.1 Simple Anatomy of the Eye 1
1.1.2 Simple Histology of Retina 2
1.1.3 Normal Macular OCT Image 4
1.2 Vitreomacular Interface Diseases 5
1.2.1 Vitreomacular Adhesion 5
1.2.2 Vitreomacular Traction 6
1.2.3 Full Thickness Macular Hole (FTMH) 7
1.2.4 Epiretinal Membrane 8
1.2.5 Myopic Traction Maculopathy 10
1.3 Glaucoma and Optic Neuropathy 10
1.3.1 Parapapillary Retinal Nerve Fiber Layer Thickness 11
1.3.2 Macular Ganglion Cell Thickness 11
1.3.3 0ptic Nerve Head Morphology 12
1.4 Retinal Vascular Diseases 14
1.4.1 Retinal Artery Occlusion 14
1.4.2 Diabetic Retinopathy 15
1.4.3 Retinal Vein Occlusion 16
1.5 0uter Retinal Degenerative Diseases 19
1.6 Choroidal Neovascularization and Polypoidal Choroidal
Chapter 2 Fundamentals of Retinal Optical Coherence Tomography 26
2.1 Introduction 26
2.2 Developments and Principles of Operation of Optical Coherence
2.2.1 Time Domain OCT 27
2.2.2 Fourier Domain OCT 28
2.2.3 0ther Evolving OCT Technologies 30
2.3 Interpretation of the Optical Coherence Tomography Image 32
Chapter 3 Speckle Noise Reduction and Enhancement for OCT
Images 38
3.1.2 Speckle Properties 40
3.2 0CT Image Modeling 41
3.3 Statistical Model for OCT Contrast Enhancement 47
3.4 Data Adaptive Transform Models for OCT Denoising 50
3.4.1 Conventional Dictionary Learning 50
3.4.2 Dual Tree Complex Wavelet Transform 51
3.4.3 Dictionary Learning with Wise Selection of Start Dictionary 52
3.5 Non Data Adaptive Transform Models for OCT Denoising 56
3.5.1 Denoising by Minimum Mean Square Error (MMSE) Estimator .58
Chapter 4 Reconstruction of Retinal OCT Images with Sparse
4.1 Introduction 75
4.2 Sparse Representation for Image Reconstruction 77
4.3 Sparsity Based on Methods for the OCT Image Reconstruction 78
4.3.1 Multiscale Sparsity Based on Tomographic Denoising (MSBTD) 78
4.3.2 Sparsity Based on Simultaneous Denoising and Interpolation
(SBSDI) 86
4.3.3 3D Adaptive Sparse Representation Based on Compression
4.4 Conclusions 102
References 104
Chapter 5 Segmentation of OCT Scans Using Probabilistic Graphical
5.1 Introduction 109
5.2 A Probabilistic Graphical Model for Retina Segmentation 111
5.2.1 The Graphical Model 111
5.2.2 Variationallnference 114
5.3 Results 117
Contents v
5.3.1 Segmentation Performance 117
5.3.2 Pathology Detection 121
5.4 Segmenting Pathological Scans 125
5.5.1 Conclusion 127
5.5.2 Prospective Work 127
A Appendix 128
A.l Derivation of the Objective (5.16) 128
A.2 0ptimization with Respect to qb 132
References 134
Chapter 6 Diagnostic Capability of Optical Coherence Tomography Based
Quantitative Analysis for Various Eye Diseases and
Additional Factors Affecting Morphological
6.1 Introduction 137
6.2 0CT Based Retinal Morphological Measurements .140
6.2.1 Quantitative Measurements of Retinal Morphology 140
6.2.2 Quality, Artifacts, and Errors in Optical Coherence Tomography
6.2.3 Effect of Axial Length on Thickness 144
6.3 Capability of Optical Coherence Tomography Based Quantitative
Analysis for Various Eye Diseases 147
6.3.1 Diabetic Retinopathy 148
6.3.2 Multiple Sclerosis 150
6.3.3 Amblyopia 156
6.4 Concluding Remarks 163
References 165
Chapter 7 Quantitative Analysis of Retinal Layers' Opticallntensities
Based on Optical Coherence Tomography 182
7.1 Introduction 182
7.2 Automatic Layer Segmentation in OCT Images 184
7.3 The Optical Intensity of Retinal Layers of Normal Subjects 185
7.3.1 Data Acquisition 185
7.3.2 Statistical Analysis 185
7.3.3 Results of Quantitative Analysis of Retinal Layer Optical Intensities of
Normal Subjects 185
7.3.4 Discussion 188
7.4 Distribution and Determinants of the Opticallntensity of Retinal Layers
of Normal Subjects 188
7.4.1 Data Acquisition and Image Processing 189
7.4.2 Statistical Analysis 190
7.4.3 Retinal Optical Intensity Measurement 190
7.4.4 Determinants of Retinal Optical Intensity 194
7.4.5 Discussion 195
7.5 The Opticallntensity Distribution in Central Retinal Artery
7.5.1 Central Retinal Artery Occlusion 195
7.5.2 Subjects and Data Acquisition 196
7.5.3 Image Analysis 197
7.5.5 Discussion 200
References 203
Chapter 8 Segmentation of Optic Disc and Cup to Disc Ratio Quantification
Based on OCT Scans 207
8.1 Introduction 207
8.2 0ptic Disc Segmentation 209
8.2.1 0verview of the Method 210
8.2.2 Coarse Disc Margin Location 211
8.2.3 SVM Based Patch Searching 214
8.3 Evaluation of Optic Disc Segmentation and C/D Ratio
Quantification 216
8.3.1 Evaluation of Optic Disc Segmentation 216
8.3.2 Evaluation of C/D Ratio Quantification 219
References 222
Chapter 9 Choroidal OCT Analytics 22
Preface
Chapter 1 Clinical Applications of Retinal Optical Coherence
1.1 Anatomy of the Eye and Retina 1
1.1.1 Simple Anatomy of the Eye 1
1.1.2 Simple Histology of Retina 2
1.1.3 Normal Macular OCT Image 4
1.2 Vitreomacular Interface Diseases 5
1.2.1 Vitreomacular Adhesion 5
1.2.2 Vitreomacular Traction 6
1.2.3 Full Thickness Macular Hole (FTMH) 7
1.2.4 Epiretinal Membrane 8
1.2.5 Myopic Traction Maculopathy 10
1.3 Glaucoma and Optic Neuropathy 10
1.3.1 Parapapillary Retinal Nerve Fiber Layer Thickness 11
1.3.2 Macular Ganglion Cell Thickness 11
1.3.3 0ptic Nerve Head Morphology 12
1.4 Retinal Vascular Diseases 14
1.4.1 Retinal Artery Occlusion 14
1.4.2 Diabetic Retinopathy 15
1.4.3 Retinal Vein Occlusion 16
1.5 0uter Retinal Degenerative Diseases 19
1.6 Choroidal Neovascularization and Polypoidal Choroidal
Chapter 2 Fundamentals of Retinal Optical Coherence Tomography 26
2.1 Introduction 26
2.2 Developments and Principles of Operation of Optical Coherence
2.2.1 Time Domain OCT 27
2.2.2 Fourier Domain OCT 28
2.2.3 0ther Evolving OCT Technologies 30
2.3 Interpretation of the Optical Coherence Tomography Image 32
Chapter 3 Speckle Noise Reduction and Enhancement for OCT
Images 38
3.1.2 Speckle Properties 40
3.2 0CT Image Modeling 41
3.3 Statistical Model for OCT Contrast Enhancement 47
3.4 Data Adaptive Transform Models for OCT Denoising 50
3.4.1 Conventional Dictionary Learning 50
3.4.2 Dual Tree Complex Wavelet Transform 51
3.4.3 Dictionary Learning with Wise Selection of Start Dictionary 52
3.5 Non Data Adaptive Transform Models for OCT Denoising 56
3.5.1 Denoising by Minimum Mean Square Error (MMSE) Estimator .58
Chapter 4 Reconstruction of Retinal OCT Images with Sparse
4.1 Introduction 75
4.2 Sparse Representation for Image Reconstruction 77
4.3 Sparsity Based on Methods for the OCT Image Reconstruction 78
4.3.1 Multiscale Sparsity Based on Tomographic Denoising (MSBTD) 78
4.3.2 Sparsity Based on Simultaneous Denoising and Interpolation
(SBSDI) 86
4.3.3 3D Adaptive Sparse Representation Based on Compression
4.4 Conclusions 102
References 104
Chapter 5 Segmentation of OCT Scans Using Probabilistic Graphical
5.1 Introduction 109
5.2 A Probabilistic Graphical Model for Retina Segmentation 111
5.2.1 The Graphical Model 111
5.2.2 Variationallnference 114
5.3 Results 117
Contents v
5.3.1 Segmentation Performance 117
5.3.2 Pathology Detection 121
5.4 Segmenting Pathological Scans 125
5.5.1 Conclusion 127
5.5.2 Prospective Work 127
A Appendix 128
A.l Derivation of the Objective (5.16) 128
A.2 0ptimization with Respect to qb 132
References 134
Chapter 6 Diagnostic Capability of Optical Coherence Tomography Based
Quantitative Analysis for Various Eye Diseases and
Additional Factors Affecting Morphological
6.1 Introduction 137
6.2 0CT Based Retinal Morphological Measurements .140
6.2.1 Quantitative Measurements of Retinal Morphology 140
6.2.2 Quality, Artifacts, and Errors in Optical Coherence Tomography
6.2.3 Effect of Axial Length on Thickness 144
6.3 Capability of Optical Coherence Tomography Based Quantitative
Analysis for Various Eye Diseases 147
6.3.1 Diabetic Retinopathy 148
6.3.2 Multiple Sclerosis 150
6.3.3 Amblyopia 156
6.4 Concluding Remarks 163
References 165
Chapter 7 Quantitative Analysis of Retinal Layers' Opticallntensities
Based on Optical Coherence Tomography 182
7.1 Introduction 182
7.2 Automatic Layer Segmentation in OCT Images 184
7.3 The Optical Intensity of Retinal Layers of Normal Subjects 185
7.3.1 Data Acquisition 185
7.3.2 Statistical Analysis 185
7.3.3 Results of Quantitative Analysis of Retinal Layer Optical Intensities of
Normal Subjects 185
7.3.4 Discussion 188
7.4 Distribution and Determinants of the Opticallntensity of Retinal Layers
of Normal Subjects 188
7.4.1 Data Acquisition and Image Processing 189
7.4.2 Statistical Analysis 190
7.4.3 Retinal Optical Intensity Measurement 190
7.4.4 Determinants of Retinal Optical Intensity 194
7.4.5 Discussion 195
7.5 The Opticallntensity Distribution in Central Retinal Artery
7.5.1 Central Retinal Artery Occlusion 195
7.5.2 Subjects and Data Acquisition 196
7.5.3 Image Analysis 197
7.5.5 Discussion 200
References 203
Chapter 8 Segmentation of Optic Disc and Cup to Disc Ratio Quantification
Based on OCT Scans 207
8.1 Introduction 207
8.2 0ptic Disc Segmentation 209
8.2.1 0verview of the Method 210
8.2.2 Coarse Disc Margin Location 211
8.2.3 SVM Based Patch Searching 214
8.3 Evaluation of Optic Disc Segmentation and C/D Ratio
Quantification 216
8.3.1 Evaluation of Optic Disc Segmentation 216
8.3.2 Evaluation of C/D Ratio Quantification 219
References 222
Chapter 9 Choroidal OCT Analytics 22
展开全部
本类五星书
本类畅销
-
有限与无限的游戏:一个哲学家眼中的竞技世界
¥37.4¥68.0 -
硅谷之火-人与计算机的未来
¥14.3¥39.8 -
全图解零基础word excel ppt 应用教程
¥12.0¥48.0 -
机器学习
¥59.4¥108.0 -
深度学习的数学
¥43.5¥69.0 -
智能硬件项目教程:基于ARDUINO(第2版)
¥31.9¥65.0 -
元启发式算法与背包问题研究
¥38.2¥49.0 -
AI虚拟数字人:商业模式+形象创建+视频直播+案例应用
¥62.9¥89.8 -
UNIX环境高级编程(第3版)
¥164.9¥229.0 -
剪映AI
¥52.8¥88.0 -
深度学习高手笔记 卷2:经典应用
¥90.9¥129.8 -
纹样之美:中国传统经典纹样速查手册
¥77.4¥109.0 -
UG NX 12.0数控编程
¥24.8¥45.0 -
MATLAB计算机视觉与深度学习实战(第2版)
¥90.9¥128.0 -
界面交互设计理论研究
¥30.8¥56.0 -
UN NX 12.0多轴数控编程案例教程
¥25.8¥38.0 -
微机组装与系统维护技术教程(第二版)
¥37.8¥43.0 -
Go 语言运维开发 : Kubernetes 项目实战
¥48.2¥79.0 -
明解C语言:实践篇
¥62.9¥89.8 -
Linux服务器架设实战(Linux典藏大系)
¥84.5¥119.0