谁说菜鸟不会数据分析(PYTHON篇)
温馨提示:5折以下图书主要为出版社尾货,大部分为全新(有塑封/无塑封),个别图书品相8-9成新、切口有划线标记、光盘等附件不全详细品相说明>>
- ISBN:9787121364587
- 装帧:简裝本
- 册数:暂无
- 重量:暂无
- 开本:16开
- 页数:232
- 出版时间:2018-06-01
- 条形码:9787121364587 ; 978-7-121-36458-7
本书特色
《谁说菜鸟不会数据分析(Python篇)》从解决工作实际问题出发,提炼总结工作中Python 常用的数据处理、数据分析实战方法与技巧。本书力求通俗易懂地介绍相关知识,在不影响学习理解的前提下,尽可能地避免使用晦涩难懂的Python 编程、统计术语或模型公式。
《谁说菜鸟不会数据分析(Python篇)》定位是带领Python 数据分析初学者入门,并能解决学习、工作中大部分的问题或需求。入门后如还需要进一步进阶学习,可自行扩展阅读相关书籍或资料,学习是永无止境的,正所谓“师傅领进门,修行在个人”。
内容简介
本书从解决工作实际问题出发,提炼总结工作中Python 常用的数据处理、数据分析实战方法与技巧。本书力求通俗易懂地介绍相关知识,在不影响学习理解的前提下,尽可能地避免使用晦涩难懂的Python 编程、统计术语或模型公式。本书定位是带领Python 数据分析初学者入门,并能解决学习、工作中大部分的问题或需求。入门后如还需要进一步进阶学习,可自行扩展阅读相关书籍或资料,学习是永无止境的,正所谓“师傅领进门,修行在个人”。
目录
1.1 数据分析定义(What) /2
1.2 数据分析作用(Why) /4
1.3 数据分析步骤(How) /5
1.3.1 明确分析目的和思路 /6
1.3.2 数据收集 /7
1.3.3 数据处理 /9
1.3.4 数据分析 /9
1.3.5 数据展现 /10
1.3.6 报告撰写 /10
1.4 数据分析的三大误区 /12
1.5 常用的数据分析工具 /13
1.5.1 Excel /13
1.5.2 SPSS /14
1.5.3 R语言 /15
1.5.4 Python语言 /16
第2 章 Python 概况 /17
2.1 Python简介 /18
2.2 Python特点 /19
2.3 Python模块 /20
2.3.1 函数 /20
2.3.2 模块 /24
2.4 Python使用场景 /27
2.5 Python 2与Python 3 /28
2.6 Python与数据科学 /29
2.7 Anaconda简介 /30
2.8 安装Anaconda /31
2.8.1 下载Anaconda /31
2.8.2 安装Anaconda /33
2.9 使用Anaconda /37
2.9.1 PyCharm 与Spyder /37
2.9.2 Anaconda 开始菜单 /38
2.9.3 Spyder 工作界面简介 /39
2.9.4 项目管理 /40
2.9.5 代码提示 /43
2.9.6 变量浏览 /44
2.9.7 图形查看 /44
2.9.8 帮助文档 /45
第3 章 编程基础 /47
3.1 数据类型 /48
3.1.1 数值型 /48
3.1.2 字符型 /50
3.1.3 逻辑型 /56
3.2 赋值和变量 /57
3.2.1 赋值和变量 /57
3.2.2 变量命名规则 /58
3.3 数据结构 /59
3.3.1 列表 /59
3.3.2 字典 /63
3.3.3 序列 /66
3.3.4 数据框 /72
3.3.5 四种数据结构的区别 /80
3.4 向量化运算 /81
3.5 for 循环 /83
3.6 Python 编程注意事项 /87
第4 章 数据处理 /90
4.1 数据导入与导出 /91
4.1.1 数据导入 /91
4.1.2 数据导出 /99
4.2 数据清洗 /100
4.2.1 数据排序 /101
4.2.2 重复数据处理 /102
4.2.3 缺失数据处理 /106
4.2.4 空格数据处理 /109
4.3 数据转换 /110
4.3.1 数值转字符 /110
4.3.2 字符转数值 /112
4.3.3 字符转时间 /113
4.4 数据抽取 /115
4.4.1 字段拆分 /116
4.4.2 记录抽取 /121
4.4.3 随机抽样 /127
4.5 数据合并 /130
4.5.1 记录合并 /130
4.5.2 字段合并 /133
4.5.3 字段匹配 /135
4.6 数据计算 /140
4.6.1 简单计算 /140
4.6.2 时间计算 /141
4.6.3 数据标准化 /142
4.6.4 数据分组 /144
第5 章 数据分析 /148
5.1 对比分析 /149
5.2 基本统计分析 /152
5.3 分组分析 /155
5.4 结构分析 /158
5.5 分布分析 /159
5.6 交叉分析 /162
5.7 RFM 分析 /164
5.8 矩阵分析 /173
5.9 相关分析 /176
5.10 回归分析 /178
5.10.1 回归分析简介 /178
5.10.2 简单线性回归分析 /180
5.10.3 多重线性回归分析 /185
第6 章 数据可视化 /189
6.1 数据可视化简介 /190
6.1.1 什么是数据可视化 /190
6.1.2 数据可视化常用图表 /190
6.1.3 通过关系选择图表 /191
6.2 散点图 /192
6.3 矩阵图 /203
6.4 折线图 /210
6.5 饼图 /215
6.6 柱形图 /217
6.7 条形图 /222
节选
"前 言 《谁说菜鸟不会数据分析》系列图书自上市以来,已拥有数十万读者与粉丝,口口相传,成为职场人士案头**的参考用书。同时非常荣幸地获得书刊发行业协会授予的“全行业品种”称号,这离不开广大读者的厚爱与支持。有读者告诉我们,每次阅读都会有新的体会与收获,这让我们很开心。 随着云计算、互联网、电子商务和物联网的飞速发展,世界已经逐步迈入大数据时代。数据分析、机器学习等数据科学技术也相应流行起来,主流的数据科学技术,都将Python 作为主要的计算工具。Python 越来越被大家熟悉和认可,成为数据分析师的新宠儿,特别是在互联网行业。 市面上Python 数据分析的相关书籍基本上多数由IT 人员编写,写作角度相对侧重技术层面,很多基础知识点和编写的代码并无详细介绍,并且在数据分析思维体系方面相对薄弱,学习门槛非常高,让非IT 专业朋友学起来较等
作者简介
"方小敏,“数据分析实战”公众号主理人,机器学习工程师;曾服务于BAT等互联网企业,熟练掌握Python、R、Spark、Hive、TensorFlow等工具进行机器学习。 张文霖,新浪博客“小蚊子数据分析”博主,数据分析师,曾服务于靠前市场研究公司、中国移动等公司,具有多年移动互联网数据分析经验,略懂Excel、PPT、SPSS、水晶易表等工具 "
-
全图解零基础word excel ppt 应用教程
¥16.3¥48.0 -
C Primer Plus 第6版 中文版
¥62.6¥108.0 -
零信任网络:在不可信网络中构建安全系统
¥34.2¥59.0 -
有限与无限的游戏:一个哲学家眼中的竞技世界
¥37.4¥68.0 -
硅谷之火-人与计算机的未来
¥20.3¥39.8 -
情感计算
¥66.8¥89.0 -
大模型RAG实战 RAG原理、应用与系统构建
¥74.3¥99.0 -
大学计算机基础实验教程(MS Office版)——面向数据分析能力培养
¥29.1¥39.8 -
LINUX企业运维实战(REDIS+ZABBIX+NGINX+PROMETHEUS+GRAFANA+LNMP)
¥51.8¥69.0 -
AI虚拟数字人:商业模式+形象创建+视频直播+案例应用
¥70.0¥89.8 -
LINUX实战——从入门到精通
¥52.4¥69.0 -
剪映AI
¥52.8¥88.0 -
快速部署大模型:LLM策略与实践(基于ChatGPT等大语言模型)
¥56.9¥79.0 -
数据驱动的工业人工智能:建模方法与应用
¥68.3¥99.0 -
数据存储架构与技术(第2版)
¥62.9¥89.8 -
纹样之美:中国传统经典纹样速查手册
¥76.3¥109.0 -
UG NX 12.0数控编程
¥24.8¥45.0 -
MATLAB计算机视觉与深度学习实战(第2版)
¥90.9¥128.0 -
UN NX 12.0多轴数控编程案例教程
¥24.3¥38.0 -
实战知识图谱
¥51.8¥69.0