
包邮走向TENSORFLOW 2.0:深度学习应用编程快速入门

- ISBN:9787121376467
- 装帧:平装-胶订
- 册数:暂无
- 重量:暂无
- 开本:其他
- 页数:168
- 出版时间:2018-01-01
- 条形码:9787121376467 ; 978-7-121-37646-7
本书特色
TensorFlow大名鼎鼎,现在已经更新了10多个版本,随着版本的更新其接口和功能也越来越强大。尤其是TensorFlow的高阶API接口,集成了很多算法和网络模型,可以达到所用即所得的地步。但是由于各种原因,我们往往很少去了解如何使用这些高级API来进行编程,解决自己的问题。因此本书旨在能够以编程实践为入手,按照实用为先的理念让更多的AI爱好者或者想要入门的人工智能的开发者能够快速上手编程。 本书分为两大部分,*部分是深度学习编程基础实践,包含三个章节:Python基础编程实践、TensorFlow基础编程实践、Python Web编程框架Flask。第二部分是TensorFlow高级API编程实践,包括五个章节:无监督学习、基于对抗学习的风格迁移、集成微信中的聊天机器人、基于BERT的知识提取、图片自动识别与标注。本书中既有既有理论知识又案例的编程实现代码,会对代码进行详细的讲解以使读者能够跟着书本内容实践编码。
内容简介
TensorFlow大名鼎鼎,现在已经更新了10多个版本,随着版本的更新其接口和功能也越来越强大。尤其是TensorFlow的高阶API接口,集成了很多算法和网络模型,可以达到所用即所得的地步。但是由于各种原因,我们往往很少去了解如何使用这些不错API来进行编程,解决自己的问题。因此本书旨在能够以编程实践为入手,按照实用为先的理念让更多的AI爱好者或者想要入门的人工智能的开发者能够快速上手编程。 本书分为两大部分,部分是深度学习编程基础实践,包含三个章节:Python基础编程实践、TensorFlow基础编程实践、Python Web编程框架Flask。第二部分是TensorFlow不错API编程实践,包括五个章节:无监督学习、基于对抗学习的风格迁移、集成微信中的聊天机器人、基于BERT的知识提取、图片自动识别与标注。本书中既有既有理论知识又案例的编程实现代码,会对代码进行详细的讲解以使读者能够跟着书本内容实践编码。
目录
1.1 Python的历史 1
1.1.1 Python版本的演进 1
1.1.2 Python的工程应用情况 2
1.2 Python的基本数据类型 2
1.3 Python数据处理工具之Pandas 6
1.3.1 数据读取和存储 7
1.3.2 数据查看和选取 8
1.3.3 数据处理 11
1.4 Python图像处理工具之PIL 14
1.4.1 PIL简介 14
1.4.2 PIL接口详解 14
1.4.3 PIL图像处理实践 18
第2章 TensorFlow 2.0快速入门 21
2.1 TensorFlow 2.0简介 21
2.2 TensorFlow 2.0环境搭建 22
2.2.1 CPU环境搭建 22
2.2.2 基于Docker的GPU环境搭建 23
2.3 TensorFlow 2.0基础知识 25
2.3.1 TensorFlow 2.0 Eager模式简介 25
2.3.2 TensorFlow 2.0 AutoGraph简介 26
2.3.3 TensorFlow 2.0低阶API基础编程 26
2.4 TensorFlow 2.0高阶API(tf.keras) 32
2.4.1 tf.keras高阶API概览 32
2.4.2 tf.keras高阶API编程 34
第3章 基于CNN的图像识别应用编程实践 36
3.1 CNN相关基础理论 36
3.1.1 卷积神经网络概述 36
3.1.2 卷积神经网络结构 36
3.1.3 卷积神经网络三大核心概念 38
3.2 TensorFlow 2.0 API详解 38
3.2.1 tf.keras.Sequential 39
3.2.2 tf.keras.layers.Conv2D 41
3.2.3 tf.keras.layers.MaxPool2D 42
3.2.4 tf.keras.layers.Flatten与tf.keras.layer.Dense 42
3.2.5 tf.keras.layers.Dropout 43
3.2.6 tf.keras.optimizers.Adam 43
3.3 项目工程结构设计 44
3.4 项目实现代码详解 44
3.4.1 工具类实现 45
3.4.2 cnnModel实现 46
3.4.3 执行器实现 48
3.4.4 Web应用实现 52
第4章 基于Seq2Seq的中文聊天机器人编程实践 55
4.1 NLP基础理论知识 55
4.1.1 语言模型 55
4.1.2 循环神经网络 57
4.1.3 Seq2Seq模型 59
4.2 TensorFlow 2.0 API详解 61
4.2.1 tf.keras.preprocessing.text.Tokenizer 61
4.2.2 tf.keras.preprocessing.sequence.pad_sequences 62
4.2.3 tf.data.Dataset.from_tensor_slices 63
4.2.4 tf.keras.layers.Embedding 63
4.2.5 tf.keras.layers.GRU 63
4.2.6 tf.keras.layers.Dense 65
4.2.7 tf.expand_dims 65
4.2.8 tf.keras.optimizers.Adam 65
4.2.9 tf.keras.losses.SparseCategoricalCrossentropy 66
4.2.10 tf.math.logical_not 66
4.2.11 tf.concat 66
4.2.12 tf.bitcast 67
4.3 项目工程结构设计 67
4.4 项目实现代码详解 68
4.4.1 工具类实现 68
4.4.2 data_util实现 69
4.4.3 seq2seqModel实现 71
4.4.4 执行器实现 77
4.4.5 Web应用实现 83
第5章 基于CycleGAN的图像风格迁移应用编程实践 85
5.1 GAN基础理论 85
5.1.1 GAN的基本思想 85
5.1.2 GAN的基本工作机制 86
5.1.3 GAN的常见变种及应用场景 86
5.2 CycleGAN的算法原理 88
5.3 TensorFlow 2.0 API详解 88
5.3.1 tf.keras.Sequential 88
5.3.2 tf.keras.Input 91
5.3.3 tf.keras.layers.BatchNormalization 91
5.3.4 tf.keras.layers.Dropout 92
5.3.5 tf.keras.layers.Concatenate 93
5.3.6 tf.keras.layers.LeakyReLU 93
5.3.7 tf.keras.layers.UpSampling2D 93
5.3.8 tf.keras.layers.Conv2D 93
5.3.9 tf.optimizers.Adam 94
5.4 项目工程结构设计 95
5.5 项目实现代码详解 96
5.5.1 工具类实现 96
5.5.2 CycleganModel实现 100
5.5.3 执行器实现 105
5.5.4 Web应用实现 109
第6章 基于Transformer的文本情感分析编程实践 111
6.1 Transformer相关理论知识 111
6.1.1 Transformer基本结构 111
6.1.2 注意力机制 112
6.1.3 位置编码 116
6.2 TensorFlow 2.0 API详解 117
6.2.1 tf.keras.preprocessing.text.Tokenizer 117
6.2.2 tf.keras.preprocessing.sequence.pad_sequences 118
6.2.3 tf.data.Dataset.from_tensor_slices 118
6.2.4 tf.keras.layers.Embedding 118
6.2.5 tf.keras.layers.Dense 119
6.2.6 tf.keras.optimizers.Adam 119
6.2.7 tf.optimizers.schedules.LearningRateSchedule 120
6.2.8 tf.keras.layers.Conv1D 120
6.2.9 tf.nn.moments 121
6.3 项目工程结构设计 121
6.4 项目实现代码详解 122
6.4.1 工具类实现 122
6.4.2 data_util实现 124
6.4.3 textClassiferMode实现 128
6.4.4 执行器实现 138
6.4.5 Web应用实现 142
第7章 基于TensorFlow Serving的模型部署实践 144
7.1 TensorFlow Serving框架简介 144
7.1.1 Servable 145
7.1.2 Source 145
7.1.3 Loader 145
7.1.4 Manager 145
7.2 TensorFlow Serving环境搭建 146
7.2.1 基于Docker搭建TensorFlow Serving环境 146
7.2.2 基于Ubuntu 16.04搭建TensorFlow Serving环境 146
7.3 API详解 147
7.3.1 tf.keras.models.load_model 147
7.3.2 tf.keras.experimental.export_saved_model 147
7.3.3 tf.keras.backend.set_learning_phase 148
7.4 项目工程结构设计 148
7.5 项目实现代码详解 149
7.5.1 工具类实现 149
7.5.2 模型文件导出模块实现 150
7.5.3 模型文件部署模块实现 150
7.5.4 Web应用模块实现 152
相关资料
本书探讨了开源机器学习软件库TensorFlow 2.0的诸多应用实践,内容涵盖各种热门的应用场景,包括图像识别、自然语言对话机器人、基于生成网络的图片风格迁移、文本情感分析等。该书是为“应用落地”而编写的,每章均附有大量的代码和注释,帮助读者更快地入门和实现应用落地。本书前两章分别介绍了Python的用法和TensorFlow的基础,在*后一章又探讨了如何将TensorFlow所训练的模型部署到生产环境中。本书对有志于在相关领域进行研究并快速产出原型的技术人员具有很高的参考价值。
寿黎但
浙江大学计算机学院教授
深度学习在工业领域逐步得到应用,尤其是其与物联网的结合,在智能家居、智慧城市、智慧交通、智慧医疗、智慧教育、智慧工业等多种行业场景中具有广阔的发展空间。而在这一发展过程中,培养合格的人工智能与物联网结合方向的研发人才,实现人工智能技术在工业应用领域的技术落地和实际应用,是人工智能领域教育培训的一个重要方向。本书详细介绍了深度学习基本原理和基于TensorFlow 2.0的编程实践入门,可以为人工智能领域的入门读者提供非常好的实践导引。
董亚波
浙江大学计算机学院副教授,人工智能研究所副所长
在与本书作者的项目合作中,借助其丰富的TensorFlow开发经验,使得项目得以顺利进行。有幸能够看到本书样章,书中内容短小精悍,有大量实战样例。读者阅读本书后,能够快速走进以TensorFlow 2.0为基础的AI系统开发领域。
牟磊育
中国地震局地球物理研究所 地震数据质量人工智能检测项目负责人
这一波人工智能浪潮与以往我们所讨论的人工智能*的不同,就是其已经迅速在工业领域进行应用。互联网 人工智能 大数据的时代正在到来,新一代人工智能正加速推进经济向智能化跃升。因此,投资界非常看好目前人工智能在IOT、5G等方向的应用前景。本书作者以深厚的专业知识和多年的实践经验,由浅入深,用生动语言讲述了人工智能的基本原理、知识结构、工业应用。相信此书能够为人工智能爱好者,以及在此领域开展技术研究的读者提供一个通俗易懂的入门导引,帮助读者更快捷地进入人工智能应用领域。
詹家芳
原德国林德工程(杭州)有限公司总经理,留美硕士
作者简介
赵英俊:阿里云人工智能领域MVP,目前在阿里云从事产业、工业智能方向的解决方案架构师工作,基于数据智能、人工智能等技术和产品解决传统产业、工业的痛点和难点问题。现个人维护一个优秀的开源NLP项目——基于Seq2Seq的中文智能聊天机器人,目前GitHub stars超过1100。
-
造神:人工智能神话的起源和破除 (精装)
¥32.7¥88.0 -
过程控制技术(第2版高职高专规划教材)
¥27.6¥38.0 -
专业导演教你拍好短视频
¥13.8¥39.9 -
数学之美
¥41.0¥69.0 -
系统性创新手册(管理版)
¥42.6¥119.0 -
人工智能
¥20.3¥55.0 -
硅谷之火-人与计算机的未来
¥15.5¥39.8 -
WPS OFFICE完全自学教程(第2版)
¥97.3¥139.0 -
人工智能基础及应用
¥34.6¥48.0 -
深入浅出软件架构
¥117.2¥186.0 -
软件设计的哲学(第2版)
¥54.0¥69.8 -
大数据技术导论(第2版)
¥28.9¥41.0 -
人工智能的底层逻辑
¥55.3¥79.0 -
剪映+PREMIERE+AIGC 短视频制作速成
¥73.5¥98.0 -
人人都能学AI
¥49.3¥68.0 -
剪映AI
¥52.0¥88.0 -
数据挖掘技术与应用
¥46.0¥75.0 -
数据采集与处理
¥36.4¥49.8 -
PLC结构化文本编程(第2版)
¥56.3¥79.0 -
中小型网络组建与管理
¥30.7¥43.0