×
超值优惠券
¥50
100可用 有效期2天

全场图书通用(淘书团除外)

关闭
暂无评论
图文详情
  • ISBN:9787560656335
  • 装帧:一般胶版纸
  • 册数:暂无
  • 重量:暂无
  • 开本:26cm
  • 页数:216页
  • 出版时间:2020-05-01
  • 条形码:9787560656335 ; 978-7-5606-5633-5

内容简介

本书主要讲述Python数据分析基础, 主要内容包括Python概述与编程基础、Python数据采集基础、基于Python Pandas的数据分析基础、基于Python Sklearn的机器学习基础等。

目录

项目1 Python程序设计基础 1 任务1.1 认识Python 1 1.1.1 Python简介 1 1.1.2 Python与数据分析 2 任务1.2 搭建开发环境 2 1.2.1 Python的安装 2 1.2.2 Python IDE简介 3 1.2.3 编写Python程序 4 任务1.3 程序基本结构 6 1.3.1 标识符变量与保留字符 6 1.3.2 缩进和多行语句 8 1.3.3 引号与注释 8 1.3.4 输出与中文编码 9 任务1.4 数据类型 10 1.4.1 常用数据类型 10 1.4.2 运算符 10 1.4.3 成员与身份运算符 12 1.4.4 格式化输出 13 任务1.5 条件分支语句 15 1.5.1 条件语句 15 1.5.2 复杂条件语句 17 任务1.6 while循环 19 1.6.1 while循环语句 19 1.6.2 循环的退出 21 任务1.7 for循环 24 1.7.1 for循环语句 24 1.7.2 for循环的退出 25 1.7.3 for循环注意事项 26 1.7.4 嵌套结构 27 任务1.8 异常处理 30 1.8.1 异常情况 30 1.8.2 异常语句 31 1.8.3 抛出异常 32 1.8.4 简单异常语句 33 综合任务 打印万年日历 34 一、项目背景 34 二、项目设计 35 三、程序代码 36 练习 37 项目2 Python程序设计进阶 38 任务2.1 Python函数 38 2.1.1 函数定义 38 2.1.2 变量范围 41 2.1.3 函数默认参数 43 2.1.4 匿名函数 45 任务2.2 Python模块 45 2.2.1 Python模块 45 2.2.2 math模块 46 2.2.3 时间和日期模块 47 2.2.4 random模块 49 任务2.3 字符串类型 49 2.3.1 字符串类型 49 2.3.2 字符串函数 51 任务2.4 列表与元组类型 57 2.4.1 列表类型 57 2.4.2 列表常用操作函数 60 2.4.3 列表与函数 62 2.4.4 元组类型 63 任务2.5 字典类型 65 2.5.1 字典类型 65 2.5.2 字典操作 65 2.5.3 字典与函数 69 2.5.4 字典参数 70 任务2.6 集合类型 71 2.6.1 认识集合 71 2.6.2 集合操作 72 任务2.7 文件操作 74 2.7.1 读写文本文件 74 2.7.2 读写二进制文件 76 综合任务 学生记录管理 79 一、项目背景 79 二、项目设计 80 三、程序代码 80 练习 84 项目3 Python数据采集基础 86 任务3.1 Flask Web网站 86 3.1.1 Flask创建网站 86 3.1.2 Flask显示静态网页 88 任务3.2 访问Web网站 89 3.2.1 创建Web网站 89 3.2.2 urlib库 90 3.2.3 requests库 91 任务3.3 正则表达式 92 3.3.1 匹配模式 92 3.3.2 re模块与字符基础匹配 92 3.3.3 re模块与字符高级匹配 96 3.3.4 re模块的综合应用 97 任务3.4 Python网络爬虫基础 99 3.4.1 BeautifulSoup爬取数据 99 3.4.2 BeautifulSoup爬虫程序 105 综合任务 爬取城市天气预报 105 一、项目背景 105 二、项目实现 106 三、程序代码 110 练习 111 项目4 Python数据分析基础 113 任务4.1 NumPy科学计算包 113 4.1.1 NumPy简介与安装 113 4.1.2 NumPy数组及其操作 114 4.1.3 NumPy数值计算 123 任务4.2 Pandas数据分析包 131 4.2.1 Pandas安装 131 4.2.2 Series结构及操作 131 4.2.3 DataFrame结构及基本操作 140 4.2.4 DataFrame高级操作 148 任务4.3 Matplotlib数据可视化包 165 4.3.1 Matplotlib安装 165 4.3.2 线图 165 4.3.3 子图 168 4.3.4 饼图 170 4.3.5 散点图 171 4.3.6 柱状图 172 4.3.7 DataFrame绘图 174 综合任务 学生成绩分析 179 一、项目背景 179 二、项目实现 179 三、程序代码 184 练习 186 项目5 Python机器学习基础 188 任务5.1 机器学习简介 188 5.1.1 机器学习概述 188 5.1.2 K-means聚类算法简介 189 5.1.3 KNN分类算法简介 195 5.1.4 线性回归算法简介 198 任务5.2 机器学习库sklearn的应用 201 5.2.1 sklearn的安装 201 5.2.2 K-means算法的应用 201 5.2.3 KNN算法的应用 204 5.2.4 线性回归算法的应用 207 综合任务 城市房价的预测 210 一、项目背景 210 二、项目实现 211 三、程序代码 213 练习 214 参考文献 216
展开全部

预估到手价 ×

预估到手价是按参与促销活动、以最优惠的购买方案计算出的价格(不含优惠券部分),仅供参考,未必等同于实际到手价。

确定
快速
导航