
包邮人工智能开发丛书人工智能开发丛书--数据挖掘与机器学习:PMML建模(下)
1星价
¥66.3
(6.7折)
2星价¥66.3
定价¥99.0

暂无评论
图文详情
- ISBN:9787122369871
- 装帧:一般胶版纸
- 册数:暂无
- 重量:暂无
- 开本:16开
- 页数:228
- 出版时间:2020-09-01
- 条形码:9787122369871 ; 978-7-122-36987-1
本书特色
本书是当前国内独一关于数据挖掘和机器学习语言PMML的图书。潘风文博士具有大数据领域二十多年的丰富经验,取得诸多成果,本书是作者长期研发经验的积累结晶。
内容简介
本书详细描述了PMML规范(Ver4.3)所支持的8种模型:神经网络模型、决策树模型、规则集模型、序列模型、评分卡模型、支持向量机模型、时间序列模型和聚合模型。全书不是简单地介绍PMML语法,而是融合各种挖掘模型基础知识和算法知识,告诉开发者如何融会贯通地掌握、使用PMML语言,不仅能够学习到标准的PMML模型表达方式,而且能学习机器学习模型的丰富知识,从而熟练地把PMML语言应用到自己的项目实践中。 本书可供从事数据挖掘(机器学习)、人工智能系统开发的软件开发者和爱好者学习使用,也可以作为高等院校大数据和人工智能等相关专业的教材。
目录
1 神经网络模型(NeuralNetwork) 1
1.1 神经网络模型基础知识 2
1.2 神经网络模型算法简介 5
1.3 神经网络模型元素 9
1.3.1 模型属性 10
1.3.2 模型子元素 14
1.3.3 评分应用过程 28
2 决策树模型(TreeModel) 29
2.1 决策树模型基础知识 30
2.1.1 决策树模型简介 30
2.1.2 逻辑谓词表达式 31
2.2 决策树模型算法简介 33
2.2.1 卡方自动交互检验算法(CHAID) 33
2.2.2 迭代二叉树ID3 42
2.2.3 分类器C4.5和C5.0 47
2.2.4 分类与回归树算法CART 53
2.3 决策树模型元素 54
2.3.1 模型属性 56
2.3.2 模型子元素 59
2.3.3 评分应用过程 68
3 规则集模型(RuleSetModel) 79
3.1 规则集模型基础知识 80
3.2 规则集模型元素 80
3.2.1 模型属性 81
3.2.2 模型子元素 81
3.2.3 评分应用过程 89
4 序列模型(SequenceModel) 93
4.1 序列模型基础知识 94
4.2 序列模型算法简介 97
4.2.1 GSP算法 97
4.2.2 SPADE算法 101
4.2.3 PrefixSpan算法 103
4.3 序列模型元素 104
4.3.1 模型属性 106
4.3.2 模型子元素 107
4.3.3 评分应用过程 118
5 评分卡模型(Scorecard) 119
5.1 评分卡模型基础知识 120
5.2 评分卡模型算法简介 121
5.3 评分卡模型元素 131
5.3.1 模型属性 132
5.3.2 模型子元素 134
5.3.3 评分应用过程 143
6 支持向量机模型(SupportVectorMachineModel) 145
6.1 支持向量机模型基础知识 146
6.2 支持向量机模型算法简介 148
6.3 支持向量机模型元素 152
6.3.1 模型属性 154
6.3.2 模型子元素 155
6.3.3 评分应用过程 164
7 时间序列模型(TimeSeriesModel) 167
7.1 时间序列模型基础知识 168
7.2 时间序列模型算法简介 171
7.2.1 算法概述 172
7.2.2 指数平滑算法 173
7.3 时间序列模型元素 176
7.3.1 模型属性 177
7.3.2 模型子元素 178
7.3.3 评分应用过程 192
8 聚合模型(MiningModel) 195
8.1 模型聚合基础知识 196
8.2 挖掘模型MiningModel 197
附录 225
后记 227
1.1 神经网络模型基础知识 2
1.2 神经网络模型算法简介 5
1.3 神经网络模型元素 9
1.3.1 模型属性 10
1.3.2 模型子元素 14
1.3.3 评分应用过程 28
2 决策树模型(TreeModel) 29
2.1 决策树模型基础知识 30
2.1.1 决策树模型简介 30
2.1.2 逻辑谓词表达式 31
2.2 决策树模型算法简介 33
2.2.1 卡方自动交互检验算法(CHAID) 33
2.2.2 迭代二叉树ID3 42
2.2.3 分类器C4.5和C5.0 47
2.2.4 分类与回归树算法CART 53
2.3 决策树模型元素 54
2.3.1 模型属性 56
2.3.2 模型子元素 59
2.3.3 评分应用过程 68
3 规则集模型(RuleSetModel) 79
3.1 规则集模型基础知识 80
3.2 规则集模型元素 80
3.2.1 模型属性 81
3.2.2 模型子元素 81
3.2.3 评分应用过程 89
4 序列模型(SequenceModel) 93
4.1 序列模型基础知识 94
4.2 序列模型算法简介 97
4.2.1 GSP算法 97
4.2.2 SPADE算法 101
4.2.3 PrefixSpan算法 103
4.3 序列模型元素 104
4.3.1 模型属性 106
4.3.2 模型子元素 107
4.3.3 评分应用过程 118
5 评分卡模型(Scorecard) 119
5.1 评分卡模型基础知识 120
5.2 评分卡模型算法简介 121
5.3 评分卡模型元素 131
5.3.1 模型属性 132
5.3.2 模型子元素 134
5.3.3 评分应用过程 143
6 支持向量机模型(SupportVectorMachineModel) 145
6.1 支持向量机模型基础知识 146
6.2 支持向量机模型算法简介 148
6.3 支持向量机模型元素 152
6.3.1 模型属性 154
6.3.2 模型子元素 155
6.3.3 评分应用过程 164
7 时间序列模型(TimeSeriesModel) 167
7.1 时间序列模型基础知识 168
7.2 时间序列模型算法简介 171
7.2.1 算法概述 172
7.2.2 指数平滑算法 173
7.3 时间序列模型元素 176
7.3.1 模型属性 177
7.3.2 模型子元素 178
7.3.3 评分应用过程 192
8 聚合模型(MiningModel) 195
8.1 模型聚合基础知识 196
8.2 挖掘模型MiningModel 197
附录 225
后记 227
展开全部
本类五星书
本类畅销
-
大数据技术导论(第2版)
¥39.0¥41.0 -
机器学习
¥91.8¥108.0 -
大模型应用开发极简入门 基于GPT-4和ChatGPT
¥41.9¥59.8 -
微信小程序开发教程
¥37.7¥49.0 -
这就是ChatGPT
¥41.9¥59.8 -
Python编程从入门到实践(第3版)
¥76.9¥109.8 -
人工智能 现代方法 第4版(全2册)
¥120.8¥198.0 -
电脑组装、选购、操作、维护、维修从入门到精通
¥24.0¥48.0 -
C程序设计(第五版)
¥34.5¥59.9 -
数据结构教程(第6版·微课视频·题库版)
¥56.3¥65.0 -
计算机组成原理实验指导与习题解析
¥34.8¥52.0 -
C程序设计(第五版)
¥22.1¥49.0 -
有限与无限的游戏:一个哲学家眼中的竞技世界
¥36.4¥68.0 -
大数据丛书数据可视化(第2版)
¥163.2¥259.0 -
数据结构基础(C语言版)(第2版)
¥42.6¥49.0 -
工业互联网安全创新技术及应用
¥73.0¥128.0 -
AI办公助手 ChatGPT+Office智能办公从入门到实践 80集视频课
¥64.8¥79.8 -
零信任架构
¥68.6¥89.0 -
红蓝攻防 技术与策略(原书第3版)
¥111.2¥139.0 -
RFID与智能卡技术实验指导书
¥29.4¥36.0