暂无评论
图文详情
- ISBN:9787510004513
- 装帧:70g胶版纸
- 册数:暂无
- 重量:暂无
- 开本:24开
- 页数:264
- 出版时间:2009-06-01
- 条形码:9787510004513 ; 978-7-5100-0451-3
内容简介
现代微分几何在理论物理中扮演着重要的角色,并且在相对论、宇宙学、高能量物理和场论、热动力学、流体力学以及力学中的应用也日益突显。
本书作为一本微分几何教程,介绍了李导数、李群以及微分形式的引入方法,及其在理论物理中的广泛应用。
有物理和应用数学背景的读者学完本书,就可以更深入学习一些科研文献以及更高层次的纯数学理论。
目录
1 Some basic mathematics
1.1 The space Rn and its topology
1.2 Mappings
1.3 Real analysis
1.4 Group theory
1.5 Linear algebra
1.6 The algebra of square matrices
1.7 Bibliography
2 Dffferentiable manifolds and tensors
2.1 Defmition of a manifold
2.2 The sphere as a manifold
2.3 Other examples of manifolds
2.4 Global considerations
2.5 Curves
2.6 Functions on M
2.7 Vectors and vector fields
2.8 Basis vectors and basis vector fields
2.9 Fiber bundles
2.10 Examples of fiber bundles
2.11 A deeper look at fiber bundles
2.12 Vector fields and integral curves
2.13 Exponentiation of the operator d/dZ
2.14 Lie brackets and noncoordinate bases
2.15 When is a basis a coordinate basis?
2.16 One-forms
2.17 Examples of one-forms
2.18 The Dirac delta function
2.19 The gradient and the pictorial representation of a one-form
2.20 Basis one-forms and components of one-forms
2.21 Index notation
2.22 Tensors and tensor fields
2.23 Examples of tensors
2.24 Components of tensors and the outer product
2.25 Contraction
2.26 Basis transformations
2.27 Tensor operations on components
2.28 Functions and scalars
2.29 The metric tensor on a vector space
2.30 The metric tensor field on a manifold
2.31 Spe relativity
2.32 Bibliography
3 Lie derivatives and Lie groups
3.1 Introduction: how a vector field maps a manifold into itself
3.2 Lie dragging a function
3.3 Lie dragging a vector field
3.4 Lie derivatives
3.5 Lie derivative of a one-form
3.6 Submanifolds
3.7 Frobenius theorem (vector field version)
3.8 Proof of Frobenius theorem
3.9 An example: the generators ors2
3.10 Invariance
3.11 Killing vector fields
3.12 Killing vectors and conserved quantities in particle dynamics
3.13 Axial symmetry
3.14 Abstract Lie groups
3.15 Examples of Lie groups
3.16 Lie algebras and their groups
3.17 Realizations and representatidns
3.18 Spherical symmetry, spherical harmonics and representations of the rotation group
3.19 Bibliography
4 Differential forms A The algebra and integral calculus of forms
4.1 Definition of volume - the geometrical role of differential forms
4.2 Notation and definitions for antisymmetric tensors
4.3 Differential forms
4.4 Manipulating differential forms
4.5 Restriction of forms
4.6 Fields of forms
4.7 Handedness and orientability
4.8 Volumes and integration on oriented manifolds
4.9 N-vectors, duals, and the symbol
4.10 Tensor densities
4.11 Generalized Kronecker deltas
4.12 Determinants and
4.13 Metric volume elements B The differential calculus of forms and its applications
4.14 The exterior derivative
4.15 Notation for derivatives
4.16 Familiar examples of exterior differentiation
4.17 Integrability conditions for partial differential equations
4.18 Exact forms
4.19 Proof of the local exactness of closed forms
4.20 Lie derivatives of forms
4.21 Lie derivatives and exterior derivatives commute
4.22 Stokes theorem
4.23 Gauss theorem and the definition of divergence
4.24 A glance at cohomology theory
4.25 Differential forms and differential equations
4.26 Frobenins theorem (differential forms version)
4.27 Proof of the equivalence of the two versions of Frobenius theorem
4.28 Conservation laws
4.29 Vector spherical harmonics
4.30 Bibliography
5 Applications in physics A Thermodynamics
5.1 Simple systems
5.2 Maxwell and other mathematical identities
5.3 Composite thermodynamic systems: Caratheodorys theorem B Hamilton/an mechanics
5.4 Hamiltodian vector fields
5.5 Canonical transformations
5.6 Map between vectors and one-forms provided by
5.7 Poisson bracket
5.8 Many-particle systems: symplectic forms
5.9 Linear dynamical systems: the symplectic inner product and conserved quantities
5.10 Fiber bundle structure of the Hamiltonian equations C Electromagnetism
5.11Rewriting Maxwells equations using differential forms
5.12 Charge and topology
5.13 The vector potential
5.14 Plane waves: a simple example D Dynamics of a perfect fluid
5.15 Role of Lie derivatives
5.16 The comoving time-derivative
5.17 Equation of motion
5.18 Conservation of vorticity
E Cosmology
5.19 The cosmological principle
5.20 Lie algebra of maximal symmetry
5.21 The metric of a spherically symmetric three-space
5.22 Construction of the six Killing vectors
5.23 Open, closed, and flat universes
5.24 Bibliography
6 Connections for Riemnnnian manifolds and gauge theories
6.1 Introduction
6.2 Parallelism on curved surfaces
6.3 The covariant derivative
6.4 Components: covariant derivatives of the basis
6.5 Torsion
6.6 Geodesics
6.7 Normal coordinates
6.8 Riemann tensor
6.9 Geometric interpretation of the Riemann tensor
6.10 Flat spaces
6.11 Compatibility of the connection with volume-measure or the metric
6.12 Metric connections
6.13 The affine connection and the equivalence principle
6.14 Connections and gauge theories: the example of electromagnetism
6.15 Bibfiography
Appendix: solutions and hints for selected exercises
Notation
Index
展开全部
作者简介
Bernard Schutz,就职于马克斯·普朗克引力物理研究所(Max Planck Institute for Gravitational Physics)和卡迪夫大学(Cardiff University),广义相对论领域的专家和学者。他的另一部著作A First Course in General Relativity 2nd ed.(《广义相对论基础教程 第2版》978-7-5100-3293-6)2011年也已由世图影印出版。
本类五星书
本类畅销
-
勒维特之星-大发现系列丛书
¥4.0¥16.0 -
喜马拉雅山珍稀鸟类图鉴
¥27.2¥68.0 -
昆虫的生存之道
¥12.2¥38.0 -
昆虫采集制作及主要目科简易识别手册
¥15.0¥50.0 -
古文诗词中的地球与环境事件
¥8.7¥28.0 -
声音简史
¥21.3¥52.0 -
不匹配的一对:动物王国的性别文化
¥16.7¥42.8 -
物理学之美-插图珍藏版
¥20.7¥69.0 -
现代物理学的概念和理论
¥18.4¥68.0 -
技术史入门
¥14.4¥48.0 -
几何原本
¥35.6¥93.6 -
改变世界的发现
¥15.4¥48.0 -
图说相对论(32开平装)
¥13.8¥46.0 -
数学的魅力;初等数学概念演绎
¥7.7¥22.0 -
星空探奇
¥14.0¥39.0 -
宇宙与人
¥10.5¥35.0 -
数学专题讲座
¥13.3¥29.0 -
袁隆平口述自传
¥19.9¥51.0 -
为了人人晓得相对论
¥3.9¥13.5 -
一代神话:哥本哈根学派
¥8.1¥15.5