- ISBN:9787522617619
- 装帧:平装-胶订
- 册数:暂无
- 重量:暂无
- 开本:32开
- 页数:184
- 出版时间:2024-01-01
- 条形码:9787522617619 ; 978-7-5226-1761-9
本书特色
本书读者对象:大中专院校计算机、人工智能相关专业学生,对机器学习、强化学习算法感兴趣的程序员。
● 本书从初高中学生都熟悉的“平均值计算”的角度出发,简单易懂地解释复杂的强化学习原理。
● 使用常见的例子(多臂老虎机问题和网格世界问题)对各种算法进行比较,使它们的特点更易理解。
● 对于强化学习的核心算法,提供了Python 3和MATLAB两种类型的代码。执行代码,可直观理解“原理 → 公式 → 程序”这一系列流程。
内容简介
作为**个战胜围棋世界冠军的人工智能机器人AlphaGo,我们知道其主要工作原理是深度学习。随着AlphaGo Zero和Alpha Zero的相继发布,作为机器学习经典算法之一的强化学习,在人工智能领域受到了更多的关注。
《强化学习算法入门》使用通俗易懂的语言,按照“原理-公式-程序”的方式,对强化学习的基础知识进行了详细讲解。书中先让大家从熟悉的“平均值计算”作为切入点,学习强化学习的基本概念,然后结合实例学习了函数近似方法、深度强化学习的原理和方法等,比较了各算法的特点和应用,并用Python和MATLAB两种语言进行了编程实现。
《强化学习算法入门》内容丰富,实践性强,特别适合高校人工智能相关专业学生,机器学习、深度学习工程师等学习强化学习算法。
目录
作者简介
[日] 曾我部东马
理学博士(物理学专业)。曾任马克斯·普朗克研究所(德国)博士研究员、剑桥大学(英国)研究员。2009年回到日本,参与创立了Grid公司,担任董事兼首席技术官。2011年起先后担任东京大学尖端科学技术研究中心特聘助理教授、特聘副教授。2016年3月起任电气通信大学副教授,同时兼任Grid公司首席技术顾问、东京大学尖端科学技术研究中心客座研究员至今。
他以开发具有“深度学习—深度强化学习—回归预测—优化”功能的跨功能机器学习框架∞ReNom而闻名,目前在开发以量子机器学习为代表的*先进量子算法∞ReNomQ的同时,还致力于使用深度强化学习的“在线优化问题”的研究。
-
有限与无限的游戏:一个哲学家眼中的竞技世界
¥37.4¥68.0 -
全图解零基础word excel ppt 应用教程
¥12.0¥48.0 -
机器学习
¥59.4¥108.0 -
深度学习的数学
¥43.5¥69.0 -
智能硬件项目教程:基于ARDUINO(第2版)
¥37.7¥65.0 -
硅谷之火-人与计算机的未来
¥14.3¥39.8 -
元启发式算法与背包问题研究
¥38.2¥49.0 -
AI虚拟数字人:商业模式+形象创建+视频直播+案例应用
¥62.9¥89.8 -
UNIX环境高级编程(第3版)
¥164.9¥229.0 -
剪映AI
¥52.8¥88.0 -
深度学习高手笔记 卷2:经典应用
¥90.9¥129.8 -
纹样之美:中国传统经典纹样速查手册
¥77.4¥109.0 -
UG NX 12.0数控编程
¥24.8¥45.0 -
MATLAB计算机视觉与深度学习实战(第2版)
¥90.9¥128.0 -
界面交互设计理论研究
¥30.8¥56.0 -
UN NX 12.0多轴数控编程案例教程
¥25.8¥38.0 -
微机组装与系统维护技术教程(第二版)
¥37.8¥43.0 -
明解C语言:实践篇
¥62.9¥89.8 -
Linux服务器架设实战(Linux典藏大系)
¥84.5¥119.0 -
PREMIERE PRO 2023全面精通:视频剪辑+颜色调整+转场特效+字幕制作+案例实战
¥69.3¥99.0