×
动手学深度学习PYTORCH+深度学习详解文轩专项套装2册

包邮动手学深度学习PYTORCH+深度学习详解文轩专项套装2册

1星价 ¥146.7 (7.0折)
2星价¥146.7 定价¥209.6
暂无评论
图文详情
  • ISBN:9787115010902
  • 装帧:平装
  • 册数:暂无
  • 重量:暂无
  • 开本:16开
  • 页数:暂无
  • 出版时间:2024-10-01
  • 条形码:9787115010902 ; 978-7-115-01090-2

本书特色

《动手学深度学习(PyTorch版)》 ·深度学习领域重磅作品《动手学深度学习》重磅推出PyTorch版本; ·李沐、阿斯顿·张等大咖作者强强联合,精心编撰; ·全球400多所大学采用的教科书,提供视频课程、教学PPT、习题,方便教师授课与学生自学; ·能运行、可讨论的深度学习入门书,可在线运行源码并与作译者实时讨论。 《深度学习详解》 1.李宏毅老师亲笔推荐,杨小康、周明、叶杰平、邱锡鹏鼎力推荐! 2.数百万次播放的深度学习课程配套书,李宏毅老师亲自点赞的开源项目,GitHub超10000次Star的开源笔记。 3.从Transformer到ChatGPT技术原理一个不落GPT中的T代表的正是Transformer。如何理解这一在深度学习领域具有深远影响的概念?从经典的论文开始,逐步深度介绍Transformer的原理。本书包含单独的ChatGPT章节,不仅介绍了ChatGPT的原理,还探讨了我们应当以怎样的态度对待Al的发展。

内容简介

《动手学深度学习(PyTorch版)》 本书是《动手学深度学习》的重磅升级版本,选用经典的PyTorch深度学习框架,旨在向读者交付更为便捷的有关深度学习的交互式学习体验。 本书重新修订《动手学深度学习》的所有内容,并针对技术的发展,新增注意力机制、预训练等内容。本书包含15章,**部分介绍深度学习的基础知识和预备知识,并由线性模型引出*简单的神经网络——多层感知机;第二部分阐述深度学习计算的关键组件、卷积神经网络、循环神经网络、注意力机制等大多数现代深度学习应用背后的基本工具;第三部分讨论深度学习中常用的优化算法和影响深度学习计算性能的重要因素,并分别列举深度学习在计算机视觉和自然语言处理中的重要应用。     本书同时覆盖深度学习的方法和实践,主要面向在校大学生、技术人员和研究人员。阅读本书需要读者了解基本的Python编程知识及预备知识中描述的线性代数、微分和概率等基础知识。 《深度学习详解》 本书根据李宏毅老师“机器学习”公开课中与深度学习相关的内容编写而成,介绍了卷积神经网络、Transformer、生成模型、自监督学习(包括 BERT 和 GPT)等深度学习常见算法,并讲解了对抗攻击、领域自适应、强化学习、元学习、终身学习、网络压缩等深度学习相关的进阶算法. 在理论严谨的基础上,本书保留了公开课中大量生动有趣的例子,帮助读者从生活化的角度理解深度学习的概念、建模过程和核心算法细节.

目录

《动手学深度学习:PyTorch版》
《深度学习详解》
展开全部

作者简介

《动手学深度学习(PyTorch版)》 作者简介: 阿斯顿·张(Aston Zhang),亚马逊资深科学家,美国伊利诺伊大学香槟分校计算机科学博士,统计学和计算机科学双硕士。他专注于机器学习和自然语言处理的研究,荣获深度学习国际顶级学术会议ICLR杰出论文奖、ACM UbiComp杰出论文奖以及ACM SenSys*佳论文奖提名。他担任过EMNLP领域主席和AAAI资深程序委员。 扎卡里·C. 立顿(Zachary C. Lipton),美国卡内基梅隆大学机器学习和运筹学助理教授,并在海因茨公共政策学院以及软件和社会系统系担任礼节性任命。他领导着近似正确机器智能(ACMI)实验室,研究涉及核心机器学习方法、其社会影响以及包括临床医学和自然语言处理在内的各种应用领域。他目前的研究重点包括处理各种因果结构下分布变化的稳健和自适应算法、超越预测为决策提供信息(包括应对已部署模型的战略响应)、医学诊断和预后预测、算法公平性和可解释性的基础。他是“Approximately Correct”博客的创始人,也是讽刺性漫画“Superheroes of Deep Learning”的合著者。 李沐(Mu Li),亚马逊资深首席科学家(Senior Principal Scientist),美国加利福尼亚大学伯克利分校、斯坦福大学客座助理教授,美国卡内基梅隆大学计算机系博士。他曾任机器学习创业公司Marianas Labs的CTO和百度深度学习研究院的主任研发架构师。他专注于机器学习系统和机器学习算法的研究。他在理论与应用、机器学习与操作系统等多个领域的顶级学术会议上发表过论文,被引用上万次。 亚历山大·J. 斯莫拉(Alexander J. Smola),亚马逊副总裁/杰出科学家,德国柏林工业大学计算机科学博士。他曾在澳大利亚国立大学、美国加利福尼亚大学伯克利分校和卡内基梅隆大学任教。他发表过超过300篇学术论文,并著有5本书,其论文及书被引用超过15万次。他的研究兴趣包括深度学习、贝叶斯非参数、核方法、统计建模和可扩展算法。 《深度学习详解》 王琦, 上海交通大学人工智能教育部重点实验室博士研究生,硕士毕业于中国科学院大学.Datawhale成员,《Easy RL:强化学习教程》作者,英特尔边缘计算创新大使,Hugging Face社区志愿者,AI TIME成员.主要研究方向为强化学习、计算机视觉、深度学习.曾获“中国光谷·华为杯”第十九届中国研究生数学建模竞赛二等奖、中国大学生计算机设计大赛二等奖、亚太地区大学生数学建模竞赛(APMCM)二等奖和“挑战杯”全国大学生课外学术科技作品竞赛江苏省选拔赛二等奖等荣誉,发表SCI/EI论文多篇. 杨毅远, 牛津大学计算机系博士研究生,硕士毕业于清华大学.Datawhale成员,《Easy RL:强化学习教程》作者.主要研究方向为时间序列、数据挖掘、智能传感系统,深度学习.曾获国家奖学金、北京市优秀毕业生、清华大学优秀硕士学位论文、全国大学生智能汽车竞赛总冠军等荣誉,发表SCI/EI论文多篇. 江季, 网易高级算法工程师,硕士毕业于北京大学.Datawhale成员,《Easy RL:强化学习教程》作者.主要研究方向为强化学习、深度学习、大模型、机器人等.曾获得国家奖学金、上海市优秀毕业生等荣誉,取得强化学习与游戏AI等相关专利多项.

预估到手价 ×

预估到手价是按参与促销活动、以最优惠的购买方案计算出的价格(不含优惠券部分),仅供参考,未必等同于实际到手价。

确定
快速
导航