- ISBN:9787510005770
- 装帧:一般胶版纸
- 册数:暂无
- 重量:暂无
- 开本:32开
- 页数:654
- 出版时间:2010-04-01
- 条形码:9787510005770 ; 978-7-5100-0577-0
本书特色
《量子群入门》是由世界图书出版公司出版的,是影印版书籍。全书介绍了Poisson-Lie groups and Lie bialgebras、Coboundary PoissoI-Lie groups and the classical Yang-Baxter equation、Solutions of the classical Yang-Baxterequation、Quasitriangular Hopf algebras、Representations and quasitensor categories等16部分的内容。
内容简介
quantum groups first arose in the physics literature, particularly in the work of l. d. faddeev and the leningrad school, from the 'inverse scattering method', which had been developed to construct and solve 'integrable' quantum systems. they have excited great interest in the past few years because of their unexpected connections with such, at first sight, unrelated parts of mathematics as the construction of knot invariants and the representation theory of algebraic groups in characteristic p.
in their original form, quantum groups are associative algebras whose defin-ing relations are expressed in terms of a matrix of constants (depending on the integrable system under consideration) called a quantum r-matrix. it was realized independently by v. g. drinfel'd and m. jimbo around 1985 that these algebras are hopf algebras, which, in many cases, are deformations of 'universal enveloping algebras' of lie algebras. a little later, yu. i. manin and s. l. woronowicz independently constructed non-commutative deforma-tions of the algebra of functions on the groups sl2(c) and su2, respectively,and showed that many of the classical results about algebraic and topological groups admit analogues in the non-commutative case.
目录
1 poisson-lie groups and lie bialgebras
1.1 poisson manifolds
1.2 poisson-lie groups
1.3 lie bialgebras
1.4 duals and doubles
1.5 dressing actions and symplectic leaves
1.6 deformation of poisson structures and quantization
bibliographical notes
2 coboundary poisson-lie groups and the classical yang-baxter equation
2.1 coboundary lie bialgebras
2.2 coboundary poisson-lie groups
2.3 classical integrable systems
bibliographical notes
3 solutions of the classical yang-baxter equation
3.1 constant solutions of the cybe
3.2 solutions of the cybe with spectral parameters
bibliographical notes
4 quasitriangular hopf algebras
4.1 hopf algebras
4.2 quasitriangular hopf algebras
bibliographical notes
5 representations and quasitensor categories
5.1 monoidal categories
5.2 quasitensor categories
5.3 invariants of ribbon tangles
bibliographical notes
6 quantization of lie bialgebras
6.1 deformations of hopf algebras
6.2 quantization
6.3 quantized universal enveloping algebras
6.4 the basic example
6.5 quantum kac-moody algebras
bibliographical notes
7 quantized function algebras
7.1 the basic example
7.2 r-matrix quantization
7.3 examples of quantized function algebras
7.4 differential calculus on quantum groups
7.5 integrable lattice models
bibliographical notes
8 structure of que algebras:the universal r-matrix
8.1 the braid group action
8.2 the quantum weyl group
8.3 the quasitriangular structure
bibliographical notes
9 specializations of que algebras
9.1 rational forms
9.2 the non-restricted specialization
9.3 the restricted specialization
9.4 automorphisms and real forms
bibliographical notes
10 representations of que algebras: the generic casa
10.1 classification of finite-dimensional representations
10.2 quantum invariant theory
bibliographical notes
11 representations of que algebras:the root of unity case
11.1 the non-restricted case
11.2 the restricted case
11.3 tilting modules and the fusion tensor product
bibliographical notes
12 infinite-dimensional quantum groups
12.1 yangians and their representations
12.2 quantum afiine algebras
12.3 frobenius-schur duality for yangians and quantum affine algebras
12.4 yangians and infinite-dimensional classical groups
12.5 rational and trigonometric solutions of the qybe
bibliographical notes
13 quantum harmonic analysis
13.1 compact quantum groups and their representations
13.2 quantum homogeneous spaces
13.3 compact matrix quantum groups
13.4 a non-compact quantum group
13.5 q-special functions
bibliographical notes
14 canonical bases
14.1 crystal bases
14.2 lusztig's canonical bases
bibliographical notes
15 quantum group invariants of knots and 3-manifolds
15.1 knots and 3-manifolds: a quick review
15.2 link invariants from quantum groups
15.3 modular hopf algebras and 3-manifold invariants
bibliographical notes
16 quasi-hopf algebras and the knizhnik-zamolodchikov equation
16.1 quasi-hopf algebras
16.2 the kohno-drinfel'd monodromy theorem
16.3 affine lie algebras and quantum groups
16.4 quasi-hopf algebras and grothendieck's esquisse
bibliographical notes
appendix kac-moody algebras
a 1 generalized cartan matrices
a 2 kac-moody algebras
a 3 the invariant bilinear form
a 4 roots
a 5 the weyl group
a 6 root vectors
a 7 aide lie algebras
a 8 highest weight modules
references
index of notation
general index
节选
《量子群入门》内容简介:A Guide to Quantum Groups,1 st ed.(978-0-521-55884-6)by Vyjayanthi haff&Andrew Pressley first published by Cambridge University Press 1994All rights reservedThis reprint edition for the People's Republic of China is published by arrange-ment with the Press Syndicate ofthe University ofCambridge,Cambridge,Unit-ed Kingdom.@ mbridge University Press&Beijing Wodd Publishing Corporation 2010This book is in copyrighL No reproduction of any part may take place without thewritten permission of Cambridge University Press or Bering Wodd Publishing orporation his edition is for sale in the mainland of China only,excluding Hong KongSAR,Macao SAR and Taiwan,and may not be bought for export here.
-
勒维特之星-大发现系列丛书
¥4.0¥16.0 -
喜马拉雅山珍稀鸟类图鉴
¥27.2¥68.0 -
昆虫的生存之道
¥12.2¥38.0 -
昆虫采集制作及主要目科简易识别手册
¥15.0¥50.0 -
古文诗词中的地球与环境事件
¥8.7¥28.0 -
声音简史
¥21.3¥52.0 -
不匹配的一对:动物王国的性别文化
¥16.7¥42.8 -
物理学之美-插图珍藏版
¥20.7¥69.0 -
现代物理学的概念和理论
¥18.4¥68.0 -
技术史入门
¥14.4¥48.0 -
改变世界的发现
¥15.4¥48.0 -
图说相对论(32开平装)
¥13.8¥46.0 -
数学的魅力;初等数学概念演绎
¥7.7¥22.0 -
宇宙与人
¥10.5¥35.0 -
数学专题讲座
¥13.3¥29.0 -
几何原本
¥35.6¥93.6 -
布尔巴基-数学家的秘密社团
¥12.2¥38.0 -
为了人人晓得相对论
¥3.9¥13.5 -
一代神话:哥本哈根学派
¥8.1¥15.5 -
考研数学高频考点精选题
¥1.3¥3.2