×
非线性动力学和统计理论在地球物理流动中的应用

非线性动力学和统计理论在地球物理流动中的应用

1星价 ¥90.3 (7.0折)
2星价¥90.3 定价¥129.0
暂无评论
图文详情
  • ISBN:9787510086281
  • 装帧:一般胶版纸
  • 册数:暂无
  • 重量:暂无
  • 开本:16开
  • 页数:550
  • 出版时间:2015-01-01
  • 条形码:9787510086281 ; 978-7-5100-8628-1

本书特色

本书是一部讲述地球物理流运用的非线性动力系统和统计理论的入门级教程,适于流体力学相关的从研究生到高级科研人员的多个交叉学科读者群。书中的很多东西应该国内没讲过,能够很好地弥补国内物理流体力学教材稀缺。没有地球物理流、概率论、信息论和平衡态统计力学的读者,这些问题将迎刃而解,书中将这些话题和相关的背景概念都引入,并通过简单例子讲述明白。 目次:正压地球物理流和二维流体流;对大尺度强迫的响应;基本地球物理流的选择性衰退原理;稳定地球流的非线性稳定性;地形流相互作用、非线性不稳定性和混沌动力学;信息理论和经验统计理论;常微分方程系统的平衡统计力学;截尾准地转方程的统计力学;*概然态的经验统计理论;地球物理流用的平衡统计理论的势应用性评估;平衡态统计理论的预测和比较;平衡态统计理论和强迫和耗散流的动力模型;平衡态统计力学预测jupiter上的喷射流和斑点;截尾地球物理流用的额外守恒量的统计相关;应用相关熵量化可预测性的数学框架;球面上的正压准地转方程。 读者对象:流体力学以及地球物理流体相关专业的学生、老师和相关的科研人员。

内容简介

本书是一部讲述地球物理流运用的非线性动力系统和统计理论的入门级教程,适于流体力学相关的从研究生到高级科研人员的多个交叉学科读者群。书中的很多东西应该国内没讲过,能够很好地弥补国内物理流体力学教材稀缺。没有地球物理流、概率论、信息论和平衡态统计力学的读者,这些问题将迎刃而解,书中将这些话题和相关的背景概念都引入,并通过简单例子讲述明白。 目次:正压地球物理流和二维流体流;对大尺度强迫的响应;基本地球物理流的选择性衰退原理;稳定地球流的非线性稳定性;地形流相互作用、非线性不稳定性和混沌动力学;信息理论和经验统计理论;常微分方程系统的平衡统计力学;截尾准地转方程的统计力学;*概然态的经验统计理论;地球物理流用的平衡统计理论的势应用性评估;平衡态统计理论的预测和比较;平衡态统计理论和强迫和耗散流的动力模型;平衡态统计力学预测Jupiter上的喷射流和斑点;截尾地球物理流用的额外守恒量的统计相关;应用相关熵量化可预测性的数学框架;球面上的正压准地转方程。 读者对象:流体力学以及地球物理流体相关专业的学生、老师和相关的科研人员。

目录

Preface1 Barotropic geophysical flows and two-dimensional fluid flows: elementary introduction 1.1 Introduction 1.2 Some special exact solutions 1.3 Conserved quantities 1.4 Barotropic geophysical flows in a channel domain - an important physical model 1.5 Variational derivatives and an optimization principle for elementary geophysical solutions 1.6 More equations for geophysical flows References2 The response to large-scale forcing 2.1 Introduction 2.2 Non-linear stability with Kolmogorov forcing 2.3 Stability of flows with generalized Kolmogorov forcing References3 The selective decay principle for basic geophysical flows 3.1 Introduction 3.2 Selective decay states and their invariance 3.3 Mathematical formulation of the selective decay principle 3.4 Energy-enstrophy decay 3.5 Bounds on the Dirichlet quotient, A(t) 3.6 Rigorous theory for selective decay 3.7 Numerical experiments demonstrating facets of selective decay References A.1 Stronger controls on A(t) A.2 The proof of the mathematical form of the selective decay principle in the presence of the beta-plane effect4 Non-linear stability of steady geophysical flows 4.1 Introduction 4.2 Stability of simple steady states 4.3 Stability for more general steady states 4.4 Non-linear stability of zonal flows on the beta-plane 4.5 Variational characterization of the steady states References5 Topographic mean flow interaction, non-linear instability, and chaotic dynamics 5.1 Introduction 5.2 Systems with layered topography 5.3 Integrable behavior 5.4 A limit regime with chaotic solutions 5.5 Numerical experiments References Appendix 1 Appendix 26 Introduction to information theory and empirical statistical theory 6.1 Introduction 6.2 Information theory and Shannons entropy 6.3 Most probable states with prior distribution 6.4 Entropy for continuous measures on the line 6.5 Maximum entropy principle for continuous fields 6.6 An application of the maximum entropy principle to geophysical flows with topography 6.7 Application of the maximum entropy principle to geophysical flows with topography and mean flow References7 Equilibrium statistical mechanics for systems of ordinary differential equations 7.1 Introduction 7.2 Introduction to statistical mechanics for ODEs 7.3 Statistical mechanics for the truncated Burgers-Hopf equations 7.4 The Lorenz 96 model References8 Statistical mechanics for the truncated quasi-geostrophic equations 8.1 Introduction 8.2 The finite-dimensional truncated quasi-geostrophic equations 8.3 The statistical predictions for the truncated systems 8.4 Numerical evidence supporting the statistical prediction 8.5 The pseudo-energy and equilibrium statistical mechanics for fluctuations about the mean 8.6 The continuum limit 8.7 The role of statistically relevant and irrelevant conserved quantities References Appendix 19 Empirical statistical theories for most probable states 9.1 Introduction 9.2 Empirical statistical theories with a few constraints 9.3 The mean field statistical theory for point vortices 9.4 Empirical statistical theories with infinitely many constraints 9.5 Non-linear stability for the most probable mean fields References10 Assessing the potential applicability of equilibrium statistical theories for geophysical flows: an overview 10.1 Introduction 10.2 Basic issues regarding equilibrium statistical theories for geophysical flows 10.3 The central role of equilibrium statistical theories with a judicious prior distribution and a few external constraints 10.4 The role of forcing and dissipation 10.5 Is there a complete statistical mechanics theory for ESTMC and ESTP? References11 Predictions and comparison of equilibrium statistical theories 11.1 Introduction 11.2 Predictions of the statistical theory with a judicious prior and a few external constraints for beta-plane channel flow 11.3 Statistical sharpness of statistical theories with few constraints 11.4 The limit of many-constraint theory (ESTMC) with small amplitude potential vorticity References12 Equilibrium statistical theories and dynamical modeling of flows with forcing and dissipation 12.1 Introduction 12.2 Meta-stability of equilibrium statistical structures with dissipation and small-scale forcing 12.3 Crude closure for two-dimensional flows 12.4 Remarks on the mathematical justifications of crude closure References13 Predicting the jets and spots on Jupiter by equilibrium statistical mechanics 13.1 Introduction 13.2 The quasi-geostrophic model for interpreting observations and predictions for the weather layer of Jupiter 13.3 The ESTP with physically motivated prior distribution 13.4 Equilibrium statistical predictions for the jets and spots on Jupiter References14 The statistical relevance of additional conserved quantities for truncated geophysical flows 14.1 Introduction 14.2 A numerical laboratory for the role of higher-order invariants 14.3 Comparison with equilibrium statistical predictions with a judicious prior 14.4 Statistically relevant conserved quantities for the truncated Burgers-Hopf equation References A.1 Spectral truncations of quasi-geostrophic flow with additional conserved quantities15 A mathematical framework for quantifying predictability utilizing relative entropy 15.1 Ensemble prediction and relative entropy as a measure of predictability 15.2 Quantifying predictability for a Gaussian prior distribution 15.3 Non-Gaussian ensemble predictions in the Lorenz 96 model 15.4 Information content beyond the climatology in ensemble predictions for the truncated Burgers-Hopf model 15.5 Further developments in ensemble predictions and information theory References16 Barotropie quasi-geostrophic equations on the sphere 16.1 Introduction 16.2 Exact solutions, conserved quantities, and non-linear stability 16.3 The response to large-scale forcing 16.4 Selective decay on the sphere 16.5 Energy enstrophy statistical theory on the unit sphere 16.6 Statistical theories with a few constraints and statistical theories with many constraints on the unit sphere References Appendix 1 Appendix 2Index
展开全部

作者简介

Andrew J. Majda(A.J.马伊达,美国)是国际知名学者,在数学和物理学界享有盛誉。本书凝聚了作者多年科研和教学成果,适用于科研工作者、高校教师和研究生。

预估到手价 ×

预估到手价是按参与促销活动、以最优惠的购买方案计算出的价格(不含优惠券部分),仅供参考,未必等同于实际到手价。

确定
快速
导航