×
大数据时代的算法-机器学习.人工智能及其典型实例
读者评分
4分

大数据时代的算法-机器学习.人工智能及其典型实例

1星价 ¥24.0 (4.9折)
2星价¥24.0 定价¥49.0

温馨提示:5折以下图书主要为出版社尾货,大部分为全新(有塑封/无塑封),个别图书品相8-9成新、切口有划线标记、光盘等附件不全详细品相说明>>

商品评论(1条)
wan***(三星用户)

一些资料的堆积

一些资料的堆积,没有多少干货

2017-02-18 10:53:55
0 0
图文详情
  • ISBN:9787121304293
  • 装帧:暂无
  • 册数:暂无
  • 重量:暂无
  • 开本:32开
  • 页数:203
  • 出版时间:2017-01-01
  • 条形码:9787121304293 ; 978-7-121-30429-3

本书特色

《大数据时代的算法:机器学习、人工智能及其典型实例》介绍在互联网行业中经常涉及的算法,包括排序算法、查找算法、资源分配算法、路径分析算法、相似度分析算法,以及与机器学习相关的算法,包括数据分类算法、聚类算法、预测与估算算法、决策算法、关联规则分析算法及推荐算法。《大数据时代的算法:机器学习、人工智能及其典型实例》涉及的相关算法均为解决实际问题中的主流算法,对于工作和学习都有实际参考意义。《大数据时代的算法:机器学习、人工智能及其典型实例》是一本算法领域内的技术参考书籍,涵盖数十种算法,通过由浅入深的介绍基础算法和机器学习算法相关理论和应用,阐述了各个算法的应用场景及算法复杂度,使读者对算法的理解不只是停留在表面,还从应用的角度提供了大量实例,使读者能够快速、高效进阶各类算法,并能够熟练应用到将来的工作实践中。

内容简介

面向实际:针对现实中的问题,给出对应算法
底层讲解:详细讲解了算法的设计思路,体会大师的思想
涵盖面广:囊括常用的53种算法,用以解决各类问题
应用广泛:可用在数据挖掘、商务智能、广告与商品推荐等多个领域

目录

第1章 算法基础 1
1.1 基础算法分析类型 1
1.1.1 分治法 1
1.1.2 动态规划法 2
1.1.3 回溯法 3
1.1.4 分支限界法 4
1.1.5 贪心法 4
1.2 算法性能分析 5
1.3 概率论与数理统计基础 6
1.4 距离计算 8
1.4.1 欧氏距离 8
1.4.2 马氏距离 9
1.4.3 曼哈顿距离 9
1.4.4 切比雪夫距离 9
1.4.5 闵氏距离 9
1.4.6 海明距离 10
1.5 排序算法 10
1.5.1 快速排序 11
1.5.2 归并排序 11
1.5.3 堆排序 13
1.5.4 基数排序 15
1.5.5 外排序 16
1.6 字符压缩编码 17
1.6.1 哈夫曼编码 17
1.6.2 香农-范诺编码 21
1.7 本章小结 24

第2章 数据查找与资源分配算法 25
2.1 数值查找算法 25
2.1.1 二分搜索算法 25
2.1.2 分块查找 27
2.1.3 哈希查找 28
2.2 字符串查找算法 30
2.2.1 Knuth-Morris-Pratt算法 31
2.2.2 Boyer-Moore算法 34
2.2.3 Sunday算法 37
2.3 海量数据中的查找 39
2.3.1 基于布隆过滤器查找 39
2.3.2 倒排索引查找 41
2.4 银行家算法 43
2.5 背包问题 45
2.5.1 0-1背包问题 45
2.5.2 部分背包问题 47
2.6 本章小结 47

第3章 路径分析算法 49
3.1 基于Dijkstra算法的路径分析 49
3.1.1 应用示例:极地探险 49
3.1.2 基于Dijkstra的zui短路径规划 50
3.2 基于Floyd算法的路径分析 53
3.2.1 应用示例:任意两个城市之间的zui短路径 53
3.2.2 Floyd原理 54
3.2.3 基于Floyd算法计算两个城市zui短距离 56
3.3 基于A*算法的路径搜索 58
3.3.1 应用实例:绕过障碍区到达目的地 58
3.3.2 A*算法与zui短距离计算 59
3.4 基于维特比算法的概率路径 61
3.4.1 应用实例:推断天气状态 61
3.4.2 维特比算法思想 62
3.4.3 计算天气状态 62
3.5 zui长公共子序列问题 64
3.5.1 概要 64
3.5.2 zui长公共子串 64
3.5.3 zui长公共子序列原理 66
3.5.4 实例:求两字符串的zui长公共子序列 66
3.6 本章小结 68第4章 相似度分析算法 69
4.1 应用实例:海量网页相似度分析 69
4.2 基于Jaccard相似系数的相似度计算 70
4.2.1 计算流程 70
4.2.2 狭义Jaccard相似系数 71
4.2.3 广义Jaccard相似系数 71
4.3 基于MinHash的相似性算法 71
4.3.1 与Jaccard相似性关系 71
4.3.2 计算网页文本相似性过程 72
4.4 向量空间模型 73
4.4.1 词袋模型 73
4.4.2 TF-IDF算法 74
4.5 基于余弦相似性算法的相似度分析 76
4.5.1 原理基础 76
4.5.2 公式解析 77
4.5.3 计算网页文本相似性过程 77
4.6 基于语义主题模型的相似度算法 78
4.7 基于SimHash算法的指纹码 80
4.7.1 SimHash引入 81
4.7.2 SimHash的计算流程 81
4.7.3 计算重复信息 83
4.8 相似度算法的差异性 84
4.9 本章小结 85

第5章 数据分类算法 86
5.1 基于朴素贝叶斯分类器 86
5.1.1 有监督分类与无监督分类 87
5.1.2 应用实例:识别车厘子与樱桃 88
5.1.3 分类流程归纳 91
5.1.4 应用扩展:垃圾邮件识别 92
5.1.5 常用评价指标 96
5.2 基于AdaBoost分类器 100
5.2.1 AdaBoost概述 100
5.2.2 AdaBoost算法具体流程 101
5.2.3 AdaBoost算法的应用实例 102
5.2.4 AdaBoost算法的优点 105
5.3 基于支持向量机的分类器 105
5.3.1 线性可分与线性不可分 106
5.3.2 感知器 107
5.3.3 支持向量机 108
5.4 基于K邻近算法的分类器 109
5.4.1 应用实例:电影观众兴趣发现 109
5.4.2 核心思想 109
5.4.3 电影观众兴趣发现 110
5.5 本章小结 113

第6章 数据聚类算法 115
6.1 采用系统聚类法 115
6.1.1 概述 116
6.1.2 zui短距离法 117
6.1.3 重心聚类法 119
6.1.4 动态聚类法 120
6.2 基于K-Means聚类算法 122
6.2.1 应用实例:新闻聚类 122
6.2.2 逻辑流程 123
6.2.3 实现新闻聚类分析 124
6.2.4 K-Means 128
6.2.5 K-中心点聚类算法 129
6.2.6 ISODATA聚类算法 130
6.3 基于密度的DBSCAN算法 131
6.4 基于BIRCH算法的聚类分析 133
6.4.1 聚类特征 133
6.4.2 聚类特征树 134
6.5 聚类与分类差异 135
6.6 本章小结 136

第7章 数据预测与估算算法 137
7.1 产生式模型与判别式模型 137
7.2 基于zui大似然估计的预测 138
7.3 基于线性回归的估算 140
7.3.1 概要 140
7.3.2 zui小二乘法 141
7.4 基于zui大期望算法分析 143
7.5 基于隐马尔科夫模型预测 144
7.5.1 应用实例:高温天气与行为概率 144
7.5.2 原理分析 145
7.5.3 高温天气与行为概率 147
7.6 基于条件随ji场的序列预测 151
7.6.1 应用实例 151
7.6.2 原理分析 151
7.6.3 条件随ji场的优缺点 153
7.7 本章小结 154

第8章 数据决策分析算法 155
8.1 基于ID3算法的决策分析 156
8.1.1 信息量 156
8.1.2 信息熵 156
8.1.3 信息增益 157
8.1.4 ID3算法流程 157
8.1.5 ID3算法的应用 157
8.2 基于C4.5算法的分类决策树 159
8.2.1 概要 159
8.2.1 应用实例 159
8.3 基于分类回归树的决策划分 161
8.3.1 概要 162
8.3.2 应用实例:决策划分 163
8.3.2 剪枝 164
8.4 基于随ji森林的决策分类 168
8.4.1 随ji森林的特点 169
8.4.2 随ji森林的构造方法 169
8.4.3 应用实例:决定车厘子的售价层次 170
8.5 本章小结 172

第9章 数据关联规则分析算法 174
9.1 基于Apriori算法的关联项分析 174
9.1.1 应用实例:超市的货架摆放问题 175
9.1.2 基本概要 175
9.1.3 算法原理 176
9.1.4 有效摆放货架 176
9.2 基于FP-Growth算法的关联性分析 179
9.2.1 构建FP树 179
9.2.2 频繁项分析 181
9.2.3 与Apripri算法比较 184
9.3 基于Eclat算法的频繁项集挖掘 184
9.4 本章小结 185

第10章 数据与推荐算法 187
10.1 概要 187
10.1.1 推荐算法发展 188
10.1.2 协同过滤推荐 189
10.2 基于Item-Based协同过滤推荐 190
10.2.1 Item-Based基本思想 190
10.2.2 Slope One实例:基于评分推荐 190
10.3 基于User-Based协同过滤推荐 193
10.3.1 应用实例:根据人群的推荐 194
10.3.2 User-Based与Item-Based对比 197
10.4 基于潜在因子算法的推荐 198
10.4.1 应用实例:新闻推荐 198
10.4.2 流行度与推荐 200
10.5 推荐算法与效果评价 201
10.6 本章小结 203
展开全部

作者简介

刘凡平,硕士,毕业于中国科学技术大学软件系统设计专业。曾任职微软亚太研发集团,从事互联网广告与分布式实时计算相关研发工作。后任职百度(中国)有限公司,并担任高级研发工程师。擅长于搜索引擎、大数据分析、分布式计算等相关研发工作,曾出版《大数据搜索引擎原理分析及编程实现》,是Iveely开源搜索引擎的主要贡献者之一,也是执着于将互联网技术演绎为艺术的完美追求者。

预估到手价 ×

预估到手价是按参与促销活动、以最优惠的购买方案计算出的价格(不含优惠券部分),仅供参考,未必等同于实际到手价。

确定
快速
导航