商业智能原理与应用
1星价
¥19.2
(3.2折)
2星价¥18.6
定价¥60.0
温馨提示:5折以下图书主要为出版社尾货,大部分为全新(有塑封/无塑封),个别图书品相8-9成新、切口有划线标记、光盘等附件不全详细品相说明>>
暂无评论
图文详情
- ISBN:9787308188241
- 装帧:一般胶版纸
- 册数:暂无
- 重量:暂无
- 开本:26cm
- 页数:337页
- 出版时间:2020-02-01
- 条形码:9787308188241 ; 978-7-308-18824-1
内容简介
本书紧密结合经管类学生的知识结构和学习特点, 以“商业智能”应用为主线, 系统介绍了商业智能的概念、方法、技术及应用, 克服了以“数据挖掘”技术为主线的局限性。以MS SQL Server为数据仓库管理平台, 以SQL Server Business Intelligence Development Visual Studio作为商业智能开发平台, 采用导航式教学方式, 进行丰富的案例演示, 采用二维码引导的操作过程视频, 学生易于学习和掌握。并探索建立人机在线互动的操作指导实验教学模式。
目录
**章 数据挖掘和商业智能
**节 数据挖掘的兴起
第二节 什么是商业智能
第三节 数据挖掘和商业智能工具
第四节 数据挖掘应用案例
小结
思考与练习
第二章 数据仓库
**节 数据仓库的概念
第二节 数据仓库的体系结构
第三节 元数据
第四节 数据集市
第五节 数据仓库设计与实施
第六节 Microsoft数据仓库和商业智能工具
第七节 数据仓库设计案例
小结
思考与练习
实验
第三章 数据预处理
**节 数据预处理的重要性
第二节 数据清洗
第三节 数据集成与转换
第四节 数据消减
第五节 离散化和概念层次树生成
第六节 使用SSIS对数据进行ETL操作
小结
思考与练习
实验
第四章 多维数据分析
**节 多维数据分析基础
第二节 多维数据分析方法
第三节 多维数据的存储方式
第四节 多维表达式
第五节 使用SQL Server Analysis Server构建维度和多维数据集
第六节 使用Excel数据透视图浏览多维数据集
小结
思考与练习
实验
第五章 用Microsoft SSRS处理智能报表
**节 SSRS商业智能报表
第二节 使用SSRS创建报表
小结
实验
第六章 数据挖掘技术
**节 数据挖掘的任务
第二节 数据挖掘的对象
第三节 数据挖掘系统的分类
第四节 数据挖掘项目的生命周期
第五节 数据挖掘面临的挑战及发展
小结
思考与练习
第七章 关联挖掘
**节 关联规则挖掘
第二节 单维布尔关联规则挖掘
第三节 挖掘多层次关联规则
第四节 多维关联规则的挖掘
第五节 关联挖掘中的相关分析
第六节 利用Microsoft SSAS进行关联挖掘
小结
思考与练习
实验
第八章 分类与预测
**节 分类与预测基本知识
第二节 有关分类和预测的几个问题
第三节 基于决策树的分类
第四节 贝叶斯分类方法
第五节 神经网络分类方法
第六节 分类器准确性
第七节 预测方法
第八节 Microsoft贝叶斯算法
第九节 Microsoft决策树算法
第十节 Microsoft神经网络算法
小结
思考与练习
实验
第九章 聚类分析
**节 聚类分析概念
第二节 聚类分析中的数据类型
第三节 主要聚类方法
第四节 划分方法
第五节 层次方法
第六节 基于密度方法
第七节 异常数据分析
第八节 Microsoft聚类算法
小结
思考与练习
实验
第十章 时序数据和序列数据挖掘
**节 时间序列模型
第二节 Microsoft的时序算法
第三节 Microsoft时序算法示例
第四节 Microsoft的序列模式挖掘
小结
思考与练习
实验
第十一章 基于多维数据集的数据挖掘
**节 OLAP和数据挖掘之间的关系
第二节 构建OLAP挖掘模型
小结
参考文献
**节 数据挖掘的兴起
第二节 什么是商业智能
第三节 数据挖掘和商业智能工具
第四节 数据挖掘应用案例
小结
思考与练习
第二章 数据仓库
**节 数据仓库的概念
第二节 数据仓库的体系结构
第三节 元数据
第四节 数据集市
第五节 数据仓库设计与实施
第六节 Microsoft数据仓库和商业智能工具
第七节 数据仓库设计案例
小结
思考与练习
实验
第三章 数据预处理
**节 数据预处理的重要性
第二节 数据清洗
第三节 数据集成与转换
第四节 数据消减
第五节 离散化和概念层次树生成
第六节 使用SSIS对数据进行ETL操作
小结
思考与练习
实验
第四章 多维数据分析
**节 多维数据分析基础
第二节 多维数据分析方法
第三节 多维数据的存储方式
第四节 多维表达式
第五节 使用SQL Server Analysis Server构建维度和多维数据集
第六节 使用Excel数据透视图浏览多维数据集
小结
思考与练习
实验
第五章 用Microsoft SSRS处理智能报表
**节 SSRS商业智能报表
第二节 使用SSRS创建报表
小结
实验
第六章 数据挖掘技术
**节 数据挖掘的任务
第二节 数据挖掘的对象
第三节 数据挖掘系统的分类
第四节 数据挖掘项目的生命周期
第五节 数据挖掘面临的挑战及发展
小结
思考与练习
第七章 关联挖掘
**节 关联规则挖掘
第二节 单维布尔关联规则挖掘
第三节 挖掘多层次关联规则
第四节 多维关联规则的挖掘
第五节 关联挖掘中的相关分析
第六节 利用Microsoft SSAS进行关联挖掘
小结
思考与练习
实验
第八章 分类与预测
**节 分类与预测基本知识
第二节 有关分类和预测的几个问题
第三节 基于决策树的分类
第四节 贝叶斯分类方法
第五节 神经网络分类方法
第六节 分类器准确性
第七节 预测方法
第八节 Microsoft贝叶斯算法
第九节 Microsoft决策树算法
第十节 Microsoft神经网络算法
小结
思考与练习
实验
第九章 聚类分析
**节 聚类分析概念
第二节 聚类分析中的数据类型
第三节 主要聚类方法
第四节 划分方法
第五节 层次方法
第六节 基于密度方法
第七节 异常数据分析
第八节 Microsoft聚类算法
小结
思考与练习
实验
第十章 时序数据和序列数据挖掘
**节 时间序列模型
第二节 Microsoft的时序算法
第三节 Microsoft时序算法示例
第四节 Microsoft的序列模式挖掘
小结
思考与练习
实验
第十一章 基于多维数据集的数据挖掘
**节 OLAP和数据挖掘之间的关系
第二节 构建OLAP挖掘模型
小结
参考文献
展开全部
本类五星书
浏览历史
本类畅销
-
底层逻辑:看清这个世界的底牌
¥29.7¥69.0 -
文案高手
¥12.6¥36.0 -
广告, 艰难的说服--广告对美国社会影响的不确定性
¥7.3¥27.0 -
富爸爸穷爸爸
¥32.0¥89.0 -
故事力法则
¥16.8¥48.0 -
图解博弈论
¥13.3¥38.0 -
NO LOGO-颠覆品牌全球统治
¥9.5¥45.0 -
学会提问
¥46.2¥69.0 -
央企真相
¥18.6¥58.0 -
冯唐成事心法
¥42.9¥78.0 -
麦肯锡高效工作法(八品)
¥13.5¥52.0 -
(平装)哈佛管理课
¥14.4¥45.0 -
掌控习惯:如何养成好习惯并戒除坏习惯
¥36.5¥58.0 -
畅销的原理:为什么好观念、好产品会一炮而红?(八品)
¥15.8¥45.0 -
投资人和你想的不一样
¥20.8¥65.0 -
狼道
¥9.1¥35.0 -
可复制的领导力
¥24.0¥49.0 -
中国的银行
¥9.9¥17.0 -
麦肯锡底层领导力/(英)克劳迪奥·费泽,(英)迈克尔·伦尼,(英)尼古莱·陈·尼尔森
¥21.8¥68.0 -
麦肯锡图表工作法
¥24.4¥49.8