×
超值优惠券
¥50
100可用 有效期2天

全场图书通用(淘书团除外)

关闭
暂无评论
图文详情
  • ISBN:9787030643568
  • 装帧:平装
  • 册数:暂无
  • 重量:暂无
  • 开本:26cm
  • 页数:276页
  • 出版时间:2020-02-01
  • 条形码:9787030643568 ; 978-7-03-064356-8

本书特色

《高等数学(下册)第二版》第二版遵照教育部高等学校大学数学课程教学指导委员会关于高等数学课程教学的基本要求,在**版的基础上修订而成。本次修订广泛吸取教学研究成果及读者反馈意见,调整一些重要概念的论述,优化部分习题配置,使内容更精炼,系统更完整,便于教学。《高等数学(下册)第二版》采用“纸质教材+数字资源”的出版形式,分上、下两册出版。上册共六章,内容为函数与极限、导数与微分、微分中值定理与导数的应用、不定积分、定积分及其应用、常微分方程;下册共五章,内容为向量代数与空间解析几何、多元函数微分法及其应用、重积分、曲线积分与曲面积分、无穷级数。书末附有部分习题答案与提示。

内容简介

上册内容为函数与极限、导数与微分、中值定理与导数的应用、不定积分、定积分及其应用、微分方程等六章。下册内容为空间解析几何与向量代数、多元函数微分法及其应用、重积分、曲线积分与曲面积分、无穷级数等五章。并在每章插入了利用Mathernatica油软件求解相关问题的内容。书末附有习题答案与提示。

目录

目录第七章 向量代数与空间解析几何 1**节 向量及其线性运算 向量的坐标表示 1一、向量的概念 1二、向量的线性运算 2三、向量的坐标表示 4四、向量的模、方向角与方向余弦 7第二节 向量的乘法运算 10一、两向量的数量积 10二、两向量的向量积 14*三、向量的混合积 16第三节 空间平面及其方程 18一、平面的点法式方程 18二、平面的一般方程 19三、两平面的夹角 21四、点到平面的距离 22第四节 空间直线及其方程 24一、直线的点向式方程与参数方程 24二、直线的一般方程 25三、两直线的夹角 26四、直线与平面的夹角 26五、点到直线的距离 27六、平面束方程 28第五节 空间曲面及其方程 31一、曲面方程的概念 31二、柱面 32三、旋转曲面 33四、二次曲面与截痕法 35第六节 空间曲线及其方程 39一、空间曲线的一般方程 39二、空间曲线的参数方程 40*三、空间曲面的参数方程 41四、空间曲线在坐标面上的投影 43第七节 利用Mathematica绘制空间的几何图形 45一、空间曲面的绘制 45二、空间曲线的绘制 49总习题七 51第八章 多元函数微分法及其应用 53**节 多元函数的基本概念 53一、邻域与区域 53二、多元函数的概念 55三、二元函数的极限 56四、二元函数的连续性 57第二节 偏导数 59一、偏导数的定义及其计算方法 59二、偏导数的几何意义 61三、高阶偏导数 63第三节 全微分 66一、全微分及其计算 66二、全微分在近似计算中的应用 70第四节 多元复合函数的求导法则 71一、复合函数的中间变量均为一元函数的情形 71二、复合函数的中间变量均为多元函数的情形 72三、复合函数的中间变量既有一元函数又有多元函数的情形 73第五节 隐函数求导公式 77一、一个方程的情形 77二、方程组的情形 80第六节 向量值函数及多元函数微分法的几何应用 84一、向量值函数及其导数 84二、空间曲线的切线与法平面 87三、曲面的切平面与法线 90第七节 方向导数与梯度 92一、方向导数 92二、梯度 94第八节 多元函数的极值与*值 97一、二元函数的极值 97二、二元函数的*值 100三、条件极值 拉格朗日乘数法 101总习题八 106第九章 重积分 109**节 重积分的概念与性质 109一、引例 109二、重积分的定义 111三、重积分的性质 113第二节 二重积分的计算法 116一、直角坐标系中二重积分的计算 116二、极坐标系中二重积分的计算 123第三节 三重积分的计算法 131一、直角坐标系中三重积分的计算 131二、柱面坐标系中三重积分的计算 135三、球面坐标系中三重积分的计算 138第四节 重积分的应用 142一、几何应用 142二、物理应用 144总习题九 151第十章 曲线积分与曲面积分 154**节 对弧长的曲线积分 154一、对弧长的曲线积分的概念与性质 154二、对弧长的曲线积分的计算 156第二节 对坐标的曲线积分 160一、对坐标的曲线积分的概念与性质 160二、对坐标的曲线积分的计算 162三、两类曲线积分之间的联系 166第三节 格林公式及其应用 168一、格林公式 168二、平面上曲线积分与路径无关的等价条件 172第四节 对面积的曲面积分 177一、对面积的曲面积分的概念与性质 177二、对面积的曲面积分的计算 179第五节 对坐标的曲面积分 182一、对坐标的曲面积分的概念与性质 182二、对坐标的曲面积分的计算 185三、两类曲面积分的联系 187第六节 高斯公式与斯托克斯公式 190一、高斯公式 190二、斯托克斯公式 193*三、沿任意闭曲面的曲面积分为零的条件 195*四、空间曲线积分与路径无关的条件 196第七节 场论初步 197一、向量场与有势场 197二、散度与旋度 198三、通量与环流量 199总习题十 201第十一章 无穷级数 204**节 常数项级数的概念和性质 204一、常数项级数的概念 204二、无穷级数的基本性质 206三、利用Mathematica判断无穷级数的敛散性 209第二节 常数项级数敛散性的判别法 211一、正项级数敛散性的判别法 211二、交错级数及其敛散性的判别法 217三、绝对收敛与条件收敛 218*四、绝对收敛级数的性质 220第三节 幂级数 223一、函数项级数的概念 223二、幂级数及其收敛域 224三、幂级数的运算 229第四节 函数的幂级数展开 232第五节 幂级数的简单应用 238一、函数值的近似计算 238二、定积分的近似计算 239第六节 傅里叶级数 240一、周期为2π的函数的傅里叶级数及其收敛性 240二、正弦级数与余弦级数 245三、利用Mathematica将函数展开成傅里叶级数 248四、以2l为周期的函数的傅里叶级数 249五、傅里叶级数的复数形式 251总习题十一 254部分习题答案与提示 257
展开全部

预估到手价 ×

预估到手价是按参与促销活动、以最优惠的购买方案计算出的价格(不含优惠券部分),仅供参考,未必等同于实际到手价。

确定
快速
导航