×
超值优惠券
¥50
100可用 有效期2天

全场图书通用(淘书团除外)

关闭
智能中医信息处理技术与应用(英文版)

智能中医信息处理技术与应用(英文版)

1星价 ¥28.4 (5.8折)
2星价¥28.4 定价¥49.0
暂无评论
图文详情
  • ISBN:9787302582861
  • 装帧:一般胶版纸
  • 册数:暂无
  • 重量:暂无
  • 开本:其他
  • 页数:212
  • 出版时间:2021-08-01
  • 条形码:9787302582861 ; 978-7-302-58286-1

本书特色

适读人群 :大众本书是作者团队在中医领域进行了10余年的应用研究,在国家十五、十一五、十二五及十三五计划项目支持下,形成的中医医案处理技术、中药方剂挖掘技术、基于开放知识源及中医文献的知识获取技术以及中医智能辅助诊断系统等技术论文的集成,希望能为从事中医信息化技术学习和研究的国内外相关研究人员、研究生及本科生提供借鉴,也为弘扬中华传统医学做出贡献。

内容简介

The past decades have witnessed the rapid advancements of computational intelligence techniques, including big data, machine learning, and knowledge engineering, in both industrial and academic communities. Specifically, with the diffusion of some computing paradigms such as natural language processing, knowledge graph, reasoning decision, it promotes the computer-assisted diagnosis and treatment in Traditional Chinese Medicine (TCM). Through the integration of our research achievements in the field of intelligent information processing on TCM over the last decade, this book introduces the data processing technologies in TCM medical records and TCM medication, the medical records-based knowledge acquisition, the text-based knowledge acquisition, and the applications of TCM knowledge. We would like to provide a guidance for graduate students, university teachers and professional technicians engaged in knowledge engineering and TCM informatization.

目录

Contents

1 Data Processing Technology in TCM Records 1

1.1 Structural Technology Research on Symptom Data 1

1.1.1 Analyze the Symptoms 2

1.1.2 Structure the Symptoms 4

1.1.3 Conclusions 7

1.2 Semantic Feature Expansion Technology Based on Knowledge Graph 7

1.2.1 Knowledge Graph and Feature Acquisition Analysis 8

1.2.2 Symptom Normalization in TCM 9

1.2.3 Acquisition of Semantic Features Based on Knowledge Path 13

1.2.4 Experiment Analysis 16

1.2.5 Conclusions 21

1.3 Medical Case Retrieval Method Based on Machine Learning 22

1.3.1 Medical Record Representation 22

1.3.2 Case Retrieval Based on Learning Ranking 25

1.3.3 Experiment and Analysis 28

1.3.4 Conclusions 32


2 Data Processing Technology in TCM Medication 33

2.1 An Intelligent Medication Matching Method for TCM 33

2.1.1 Measure the Correlation between Medications 33

2.1.2 Random Walk Similarity of Nodes 37

2.1.3 The Graph Clustering 39

2.1.4 Experiment 39

2.2 The Core Medications Analysis Based on Social Network Analysis 41

2.2.1 The Social Network Construction about Semantic Relations of

TCM Records 41

2.2.2 Core Medications Analysis Based on Social Network Analysis 42

2.2.3 The Implementation of Core Medications Algorithms 46

2.2.4 Conclusions 48

2.3 Analysis and Mining of Core Prescription Using Fuzzy Cognitive Map 48

2.3.1 Construction of Fuzzy Cognitive Map 49

2.3.2 Realization of Core Prescription Mining 51

2.3.3 Systematic Review 55

2.3.4 Conclusions 57


3 The Medical Records-based Knowledge Acquisition 59

3.1 Centrality Research on the Traditional Chinese Medicine Network 59

3.1.1 Basic Thought and Concept 60

3.1.2 Method to Calculate Betweenness Centrality 62

3.1.3 Betweenness Centrality Algorithm 63

3.1.4 Example Analyses 64

3.1.5 Conclusions 66

3.2 Cognitive Induction Based Knowledge Acquisition 66

3.2.1 Data Preprocessing 66

3.2.2 Inductive Logic Based Inductive Learning Algorithm 68

3.2.3 Graph-based Inductive Learning Algorithm 71

3.2.4 Application of Inductive Learning Algorithm 73

3.3 Analysis on Interactive Structure of Knowledge Acquisition 77

3.3.1 Relevant Work 78

3.3.2 Structural Modeling Analyzing 79

3.3.3 Construction of Structural Model 81

3.3.4 Algorithms 81

3.3.5 Verification & Application 82

3.3.6 Conclusions 84

3.4 Application of Structural Analysis in Knowledge Acquisition of

Traditional Chinese Medicine 84

3.4.1 Structural Modeling 85

3.4.2 Arithmetic and Analysis 87

3.4.3 Application Example 88

3.4.4 Conclusions 91


4 Text-based Knowledge Acquisition 93

4.1 Knowledge Acquisition Based on Open Data Source 93

4.2 Unsupervised TCM Text Segmentation Combined with Domain Dictionary 101

4.2.1 Related Work 102

4.2.2 Method 103

4.2.3 Experience 106

4.2.4 Conclusions 109

4.3 A Phrase Mining Method for TCM 110

4.3.1 Methods 110

4.3.2 Results 115

4.3.3 Conclusions 117

4.4 Improving Distantly-Supervised Named Entity Recognition 117

4.4.1 Related work 119

4.4.2 NER Scheme 120

4.4.3 Experiment 127

4.4.4 Relation Extraction Frame 132

4.5 Nested Named Entity Recognition Method 133

4.5.1 Methodology 135

4.5.2 Experiments 137

4.5.3 Conclusions 141


5 Application of Knowledge of TCM 143

5.1 Fuzzy Ontology Constructing and its Application in TCM 143

5.1.1 Structure of Fuzzy Ontology 143

5.1.2 Application of Fuzzy Ontology 147

5.1.3 Conclusions 150

5.2 Personalized Diagnostic Modal Discovery of TCM Knowledge Graph 150

5.2.1 Access to Medical Data and Normalization 150

5.2.2 Obtain the Medical Records Node and Get the Path and Storage 153

5.2.3 Overlay All Medical Path Results 157

5.2.4 Using the Template 159

5.2.5 Result Analysis 160

5.2.6 Conclusions 168

5.3 Assistant Diagnostic Method of TCM 168

5.3.1 Data Pretreatment 169

5.3.2 Research on Integrated Diagnosis Based on Multi Classification 170

5.3.3 Conclusions 176

5.4 Auxiliary Diagnosis Based on the Knowledge Graph of TCM Syndrome 177

5.4.1 Related Work 177

5.4.2 TCM Diagnosis Path Discovery 181

5.4.3 Meta-path Based on Reasoning Strategy 182

?

5.4.4 Experiment 186

5.4.5 Conclusions 189


References 191


Figure List 195


Table List 199


展开全部

作者简介

阿孜古丽·吾拉木,北京科技大学计算机与通信工程学院教授,博导;北京科技大学材料领域知识工程北京市重点实验室副主任,主要研究方向为知识工程、知识图谱、深度学习、人工智能。近年来,结合类脑智能技术,从感知的注意力机制、记忆学习以及推理技术等角度,研究形成自然语言实体与关系提取技术、大规模知识图谱、知识库构造与推理技术,以及人工智能知识工程应用技术。承担国家863、国家科技支撑、国家重点研发计划以及北京市省部级课题等30余项。组织实施了北京市科委重大项目“重点行业信息化知识库建设”、研发“大数据征信服务平台”、“工业大数据平台”及“大数据驱动智能诊断系统”等,承担科技部、北京市科委条件平台建设,参与多个智慧城市顶层设计,担任科技部、北京市科委专家。项目研究成果授权发明专利2项,申请发明专利6项,获得北京市科学技术奖二等奖、北京市科学技术进步三等奖、冶金科学技术一等奖、冶金矿山科学技术奖特等奖等,出版了《创新理论与实现技术》、《行业信息化知识库建设实现技术》、《科技与生活同行》、《科学你我他》等系列著作,发表学术论文40余篇。

预估到手价 ×

预估到手价是按参与促销活动、以最优惠的购买方案计算出的价格(不含优惠券部分),仅供参考,未必等同于实际到手价。

确定
快速
导航