Python数据分析之道——Thinking in Panda
- ISBN:9787517097808
- 装帧:一般胶版纸
- 册数:暂无
- 重量:暂无
- 开本:其他
- 页数:112
- 出版时间:2021-10-01
- 条形码:9787517097808 ; 978-7-5170-9780-8
内容简介
本书通过以Pandas实现的精彩的数据分析项目,来讲解大数据相关的主题及概念。通过学习本书,读者可以根据项目的大小及类型来评估自己的项目是否适合使用Pandas库。本书对如何在Pandas中高效地加载及标准化数据进行了解读,并回顾了一些很常用的加载器及它们的一些拥有威力的选项,从而读者可以学会如何高效地存取及转换数据、使用什么方法、什么时候采用或回避一些更高性能的技术。本书还将带读者用心思考Pandas中基本的数据访问及维护,以及直觉字典语法。 本书适合作为Python数据分析学习者及相关从业人员的参考用书。
目录
第1章 概述
pandas简介
如何利用pandas构建一个黑洞图像
如何利用pandas帮助金融机构对未来市场
进行更准确预测
如何利用pandas提高内容可发现性
第2章 基本数据访问与合并
DataFrame的创建和访问
iloc方法
loc方法
使用merge方法合并DataFrame
使用join方法合并DataFrame
使用concat方法合并DataFrame
第3章 pandas在Hood下的工作机制
Python数据结构
CPython解释器、Python和NumPy的性能
pandas性能简介
选择正确的DataFrame
第4章 数据加载与规范化
pd.read_csv
pd.read_json
pd.read_sql, pd.read_sql_table, and
pd.read_sql_query
第5章 pandas基础数据转换
pivot和pivot表
stack和unstack
melt
转置transpose
第6章 apply方法
不适用apply方法的场合
适用apply方法的场合
利用Cythorl提高apply方法的性能
第7章 Groupby
正确使用groupby
索引
避免使用groupby
第8章 pandas之外的性能改进
计算机体系结构
如何利用NumExpr改进性能
BLAS和LAPACK
第9章 pandas的发展趋势
pandas 1.0
结论
作者简介
Hannah Stepanek是一名对软件性能富有激情的软件开发人员,同时也是开源软件的积极倡导者。她拥有七年以上的Python编程行业经验,她花了两年左右的时间使用Pandas实现了一个数据分析项目。
-
全图解零基础word excel ppt 应用教程
¥15.6¥48.0 -
有限与无限的游戏:一个哲学家眼中的竞技世界
¥37.4¥68.0 -
硅谷之火-人与计算机的未来
¥12.7¥39.8 -
机器学习
¥59.4¥108.0 -
深度学习的数学
¥43.5¥69.0 -
智能硬件项目教程:基于ARDUINO(第2版)
¥37.7¥65.0 -
情感计算
¥66.8¥89.0 -
元启发式算法与背包问题研究
¥38.2¥49.0 -
LINUX企业运维实战(REDIS+ZABBIX+NGINX+PROMETHEUS+GRAFANA+LNMP)
¥48.3¥69.0 -
AI虚拟数字人:商业模式+形象创建+视频直播+案例应用
¥62.9¥89.8 -
LINUX实战——从入门到精通
¥48.3¥69.0 -
UNIX环境高级编程(第3版)
¥164.9¥229.0 -
剪映AI
¥52.8¥88.0 -
数据驱动的工业人工智能:建模方法与应用
¥68.3¥99.0 -
深度学习高手笔记 卷2:经典应用
¥90.9¥129.8 -
纹样之美:中国传统经典纹样速查手册
¥76.3¥109.0 -
UG NX 12.0数控编程
¥24.8¥45.0 -
MATLAB计算机视觉与深度学习实战(第2版)
¥90.9¥128.0 -
UN NX 12.0多轴数控编程案例教程
¥24.3¥38.0 -
微机组装与系统维护技术教程(第二版)
¥37.8¥43.0