×
超值优惠券
¥50
100可用 有效期2天

全场图书通用(淘书团除外)

关闭
Time series analysis and its applications with R examples

Time series analysis and its applications with R examples

1星价 ¥128.1 (8.6折)
2星价¥128.1 定价¥149.0
暂无评论
图文详情
  • ISBN:9787519277048
  • 装帧:一般胶版纸
  • 册数:暂无
  • 重量:暂无
  • 开本:24cm
  • 页数:11,562页
  • 出版时间:2022-10-01
  • 条形码:9787519277048 ; 978-7-5192-7704-8

本书特色

◎编辑推荐 本书是全球流行的时间序列分析经典教材,已畅销20余年,改版3次。新的第4版仍保持前版的特色,全面并平衡地对时域和频域方法进行了讲授。书中包含大量使用真实数据解决问题的实例,例如用道琼斯工业平均指数数据来分析金融危机、用功能性磁共振成像数据评估疼痛感、从观测数据中发现自然和人为引起的气候变化、对是否遵守《核禁试条约》进行监测等。 ◎媒体推荐/名人推荐/读者推荐 “The authors have to be congratulated for their ability to describe in a book of less than 600 pages such a variety of topics and methods, together with scripts allowing the reproduction of the results, for so many real examples. It is a valuable contribution with a strong statistical orientation and a carefully designed pleasant typography.” ——Anna Bartkowiak, in ISCB News “The chapters are nicely structured, well presented and motivated. … it provides sufficient exercise questions making it easier for adoption as a graduate textbook. The book will be equally attractive to graduate students, practitioners, and researchers in the respective fields. … The book contributes stimulating and substantial knowledge for time series analysis for the benefit of a host of community and exhibits the use and practicality of the fabulous subject statistics.” ——S. Ejaz Ahmed, in Technometrics

内容简介

本书是Springer统计学教程系列之一,全面地讲述了时频域方法理论。在前几版的基础上增加了不少新的内容,大量的实例结合统计软件的应用,使本书的实用性更强。延续了前几版的风格,包括分类时间序列分析、谱包络、多元谱方法、长记忆序列、非线性模型、纵向数据分析、重抽样技巧、Garch模型、随机波动性模型、小波和Monte Carlo Markov链积分方法*近发展比较迅速的话题。在本版中将这些材料划分为更小的章节,讲述更加详细,金融时间序列讲述的范围也更加广阔,包括GARCH和随机波动模型。每章末都附有问题,这些问题可以加深读者对所学内容的理解。目次:时间序列特征;时间序列回归和控制性数据分析;ARIMA模型;谱分析和滤波;时间域;状态空间模型;频域中的统计方法。

目录

Preface to the Fourth Edition Preface to the Third Edition 1 Characteristics of Time Series 1.1 The Nature of Time Series Data 1.2 Time Series Statistical Models 1.3 Measures of Dependence 1.4 Stationary Time Series 1.5 Estimation of Correlation 1.6 Vector-Valued and Multidimensional Series Problems 2 Time Series Regression and Exploratory Data Analysis 2.1 Classical Regression in the Time Series Context 2.2 Exploratory Data Analysis 2.3 Smoothing in the Time Series Context Problems 3 ARIMA Models 3.1 Autoregressive Moving Average Models 3.2 Difference Equations 3.3 Autocorrelation and Partial Autocorrelation 3.4 Forecasting 3.5 Estimation 3.6 Integrated Models for Nonstationary Data 3.7 Building ARIMA Models 3.8 Regression with Autocorrelated Errors 3.9 Multiplicative Seasonal ARIMA Models Problems 4 Spectral Analysis and Filtering 4.1 Cyclical Behavior and Periodicity 4.2 The Spectral Density 4.3 Periodogram and Discrete Fourier Transform 4.4 Nonparametric Spectral Estimation 4.5 Parametric Spectral Estimation 4.6 Multiple Series and Cross-Spectra 4.7 Linear Filters 4.8 Lagged Regression Models 4.9 Signal Extraction and Optimum Filtering 4.10 Spectral Analysis of Multidimensional Series Problems 5 Additional Time Domain Topics 5.1 Long Memory ARMA and Fractional Differencing 5.2 Unit Root Testing 5.3 GARCH Models 5.4 Threshold Models 5.5 Lagged Regression and Transfer Function Modeling 5.6 Multivariate ARMAX Models Problems 6 State Space Models 6.1 Linear Gaussian Model 6.2 Filtering, Smoothing,and Forecasting 6.3 Maximum Likelihood Estimation 6.4 Missing Data Modifications 6.5 Structural Models: Signal Extraction and Forecasting 6.6 State-Space Models with Correlated Errors 6.6.1 ARMAX Models 6.6.2 Multivariate Regression with Autocorrelated Errors 6.7 Bootstrapping State Space Models 6.8 Smoothing Splines and the Kalman Smoother 6.9 Hidden Markov Models and Switching Aut oregression 6.10 Dynamic Linear Models with Switching 6.1.1 Stochastic Volatility 6.1.2 Bayesian Analysis of State Space Models Problems 7 Statistical Methods in the Frequency Domain 7.1 Introduction 7.2 Spectral Matrices and Likelihood Functions 7.3 Regression for Joindy Stationary Series 7.4 Regression with Deterministic Inputs 7.5 Random Coefficient Regression …… Appendix A Large Sample Theory Appendix B Time Domain Theory Appendix C SpectraIDomain Theory Appendix R R Supplement References Index
展开全部

作者简介

罗伯特·沙姆韦(Robert H. Shumway),是美国加州大学戴维斯分校的统计学荣休教授。他是美国统计学会(American Statistical Association)和国际统计学会(International Statistical Institute)的杰出会士。他对时间序列应用的研究曾获得过1986年美国统计学会杰出统计应用奖和1992年传染病中心统计奖。他出版过多部有影响力的统计学教材,并担任Forecasting和Journal of the American Statistical Association等期刊的编委。 戴维·斯托弗(David S. Stoffer),是美国匹兹堡大学统计学荣休教授。他是美国统计学会的杰出会士,并获得过1989年美国统计学会杰出统计应用奖。他曾担任美国国家科学基金会数学科学部的项目主任,还是Forecasting、Journal of the American Statistical Association、Annals of Statistical Mathematics、Journal of Time Series Analysis、Journal of Business & Economic Statistics等期刊的编委。

预估到手价 ×

预估到手价是按参与促销活动、以最优惠的购买方案计算出的价格(不含优惠券部分),仅供参考,未必等同于实际到手价。

确定
快速
导航