Preface
1 Introduction
2 The Lasso for Linear Models
2.1 Introduction
2.2 The Lasso Estimator
2.3 Cross-Validation and Inference
2.4 Computation of the Lasso Solution
2.4.1 Single Predictor: Soft Thresholding
2.4.2 Multiple Predictors: Cyclic Coordinate Descent
2.4.3 Soft-Thresholding and Orthogonal Bases
2.5 Degrees of Freedom
2.6 Uniqueness of the Lasso Solutions
2.7 A Glimpse at the Theory
2.8 The Nonnegative Garrote
2.9 lq Penalties and Bayes Estimates
2.10 Some Perspective
Exercises
3 Generalized Linear Models
3.1 Introduction
3.2 Logistic Regression
3.2.1 Example: Document Classification
3.2.2 Algorithms
3.3 Multiclass Logistic Regression
3.3.1 Example: Handwritten Digits
3.3.2 Algorithms
3.3.3 Grouped-Lasso Multinomial
3.4 Log-Linear Models and the Poisson GLM
3.4.1 Example: Distribution Smoothing
3.5 Cox Proportional Hazards Models
3.5.1 Cross-Validation
3.5.2 Pre-Validation
3.6 Support Vector Machines
3.6.1 Logistic Regression with Separable Data
3.7 Computational Details and glmnet
Bibliographic Notes
Exercises
4 Generalizations of the Lasso Penalty
4.1 Introduction
4.2 The Elastic Net
4.3 The Group Lasso
4.3.1 Computation for the Group Lasso
4.3.2 Sparse Group Lasso
4.3.3 The Overlap Group Lasso
4.4 Sparse Additive Models and the Group Lasso
4.4.1 Additive Models and Backfitting
4.4.2 Sparse Additive Models and Backfitting
4.4.3 Approaches Using Optimization and the Group Lasso
4.4.4 Multiple Penalization for Sparse Additive Models
4.5 The Fused Lasso
4.5.1 Fitting the Fused Lasso
4.5.1.1 Reparametrization
4.5.1.2 A Path Algorithm
4.5.1.3 A Dual Path Algorithm
4.5.1.4 Dynamic Programming for the Fused Lasso
4.5.2 Trend Filtering
4.5.3 Nearly Isotonic Regression
4.6 Nonconvex Penalties
Bibliographic Notes
Exercises
5 Optimization Methods
5.1 Introduction
5.2 Convex Optimality Conditions
5.2.1 Optimality for Differentiable Problems
5.2.2 Nondifferentiable Functions and Subgradients
5.3 Gradient Descent
5.3.1 Unconstrained Gradient Descent
5.3.2 Projected Gradient Methods
5.3.3 Proximal Gradient Methods
5.3.4 Accelerated Gradient Methods
5.4 Coordinate Descent
5.4.1 Separability and Coordinate Descent
5.4.2 Linear Regression and the Lasso
5.4.3 Logistic Regression and Generalized Linear Models
5.5 A Simulation Study
5.6 Least Angle Regression
5.7 Alternating Direction Method of Multipliers
5.8 Minorization-Maximization Algorithms
5.9 Biconvexity and Alternating Minimization
5.10 Screening Rules
Bibliographic Notes
Appendix
Exercises
6 Statistical Inference
6.1 The Bayesian Lasso
6.2 The Bootstrap
6.3 Post-Selection Inference for the Lasso
6.3.1 The Covariance Test
6.3.2 A General Scheme for Post-Selection Inference
6.3.2.1 Fixed-入 Inference for the Lasso
6.3.2.2 The Spacing Test for LAR
6.3.3 What Hypothesis Is Being Tested?
6.3.4 Back to Forward Stepwise Regression
6.4 Inference via a Debiased Lasso
6.5 Other Proposals for Post-Selection Inference
Bibliographic Notes
Exercises
7 Matrix Decompositions, Approximations, and Completion
7.1 Introduction
7.2 The Singular Value Decomposition
7.3 Missing Data and Matrix Completion
7.3.1 The Netflix Movie Challenge
7.3.2 Matrix Completion Using Nuclear Norm
7.3.3 Theoretical Results for Matrix Completion
7.3.4 Maximum Margin Factorization and Related Methods
7.4 Reduced-Rank Regression
7.5 A General Matrix Regression Framework
7.6 Penalized Matrix Decomposition
7.7 Additive Matrix Decomposition
Bibliographic Notes
Exercises
8 Sparse Multivariate Methods
8.1 Introduction
8.2 Sparse Principal Components Analysis
8.2.1 Some Background
8.2.2 Sparse Principal Components
8.2.2.1 Sparsity from Maximum Variance
8.2.2.2 Methods Based on Reconstruction
8.2.3 Higher-Rank Solutions
8.2.3.1 Illustrative Application of Sparse PCA
8.2.4 Sparse PCA via Fantope Projection
8.2.5 Sparse Autoencoders and Deep Learning
8.2.6 Some Theory for Sparse PCA
8.3 Sparse Canonical Correlation Analysis
8.3.1 Example: Netflix Movie Rating Data
8.4 Sparse Linear Discriminant Analysis
8.4.1 Normal Theory and Bayes' Rule
8.4.2 Nearest Shrunken Centroids
8.4.3 Fisher's Linear Discriminant Analysis
8.4.3.1 Example: Simulated Data with Five Classes
8.4.4 Optimal Scoring
8.4.4.1 Example: Face Silhouettes
8.5 Sparse Clustering
8.5.1 Some Background on Clustering
8.5.1.1 Example: Simulated Data with Six Classes
8.5.2 Sparse Hierarchical Clustering
8.5.3 Sparse K-Means Clustering
8.5.4 Convex Clustering
Bibliographic Notes
Exercises
9 Graphs and Model Selection
9.1 Introduction
9.2 Basics of Graphical Models
9.2.1 Factorization and Markov Properties
9.2.1.1 Factorization Property
9.2.1.2 Markov Property
9.2.1.3 Equivalence of Factorization and Markov Properties
9.2.2 Some Examples
9.2.2.1 Discrete Graphical Models
9.2.2.2 Gaussian Graphical Models
9.3 Graph Selection via Penalized Likelihood
9.3.1 Global Likelihoods for Gaussian Models
9.3.2 Graphical Lasso Algorithm
9.3.3 Exploiting Block-Diagonal Structure
9.3.4 Theoretical Guarantees for the Graphical Lasso
9.3.5 Global Likelihood for Discrete Models
9.4 Graph Selection via Conditional Inference
9.4.1 Neighborhood-Based Likelihood for Gaussians
9.4.2 Neighborhood-Based Likelihood for Discrete Models
9.4.3 Pseudo-Likelihood for Mixed Models
9.5 Graphical Models with Hidden Variables
Bibliographic Notes
Exercises
10 Signal Approximation and Compressed Sensing
10.1 Introduction
10.2 Signals and Sparse Representations
10.2.1 Orthogonal Bases
10.2.2 Approximation in Orthogonal Bases
10.2.3 Reconstruction in Overcomplete Bases
10.3 Random Projection and Approximation
10.3.1 Johnson–Lindenstrauss Approximation
10.3.2 Compressed Sensing
10.4 Equivalence between lo and l1 Recovery
10.4.1 Restricted Nullspace Property
10.4.2 Sufficient Conditions for Restricted Nullspace
10.4.3 Proofs
10.4.3.1 Proof of Theorem 10.1
10.4.3.2 Proof of Proposition 10.1
Bibliographic Notes
Exercises
11 Theoretical Results for the Lasso
11.1 Introduction
11.1.1 Types of Loss Functions
11.1.2 Types of Sparsity Models
11.2 Bounds on Lasso l2-Error
11.2.1 Strong Convexity in the Classical Setting
11.2.2 Restricted Eigenvalues for Regression
11.2.3 A Basic Consistency Result
11.3 Bounds on Prediction Error
11.4 Support Recovery in Linear Regression
11.4.1 Variable-Selection Consistency for the Lasso
11.4.1.1 Some Numerical Studies
11.5 Beyond the Basic Lasso
Bibliographic Notes
Exercises
Bibliography
Author Index
Index
展开全部
作者简介
Trevor Hastie 美国统计学家和计算机科学家,斯坦福大学统计学教授,英国统计学会、国际数理统计协会和美国统计学会会士。Hastie参与开发了R中的大部分统计建模软件和环境,发明了主曲线和主曲面。 Robert Tibshirani 斯坦福大学统计学教授,国际数理统计协会、美国统计学会和加拿大皇家学会会士,1996年COPSS总统奖得主,提出lasso方法。Hastie和Tibshirani都是统计学习领域的泰山北斗,两人合著了The Elements of Statistical Learning,还合作讲授斯坦福大学的公开课“统计学习”。 Martin Wainwright 毕业于MIT,加州大学伯克利分校教授,以对统计与计算交叉学的理论和方法研究而闻名于学界,主要关注高维统计、机器学习、图模型和信息理论。2014年COPSS总统奖得主。