- ISBN:9787506292672
- 装帧:一般胶版纸
- 册数:暂无
- 重量:暂无
- 开本:16开
- 页数:697
- 出版时间:2008-11-01
- 条形码:9787506292672 ; 978-7-5062-9267-2
本书特色
微分几何在现代理论物理和应用数学中扮演着越来越重要的角色。本书给出了在理论物理和应用数学中很重要的几何知识的引入,包括,流形、张量场、微分形式、联络、辛几何、李群作用、族以及自旋。 本书以一种非正式的形式写作,作者给出了1000多例子重在强调对一般理论的深刻理解。本书将要为读者很好的学习拉格郎日现代处理方法、哈密顿力学、电磁、规范场,相对论以及万有引力做充足的准备。 本书很适合作为物理、数学以及工程专业的高年级本科生以及研究生的教程,也是一本很难得自学教程。
内容简介
微分几何在现代理论物理和应用数学中扮演着越来越重要的角色。本书给出了在理论物理和应用数学中很重要的几何知识的引入,包括,流形、张量场、微分形式、联络、辛几何、李群作用、族以及自旋。 本书以一种非正式的形式写作,作者给出了1000多例子重在强调对一般理论的深刻理解。本书将要为读者很好的学习拉格郎日现代处理方法、哈密顿力学、电磁、规范场,相对论以及万有引力做充足的准备。 本书很适合作为物理、数学以及工程专业的高年级本科生以及研究生的教程,也是一本很难得自学教程。
目录
Preface
Introduction
1 The concept of a manifold
1.1 Topology and continuous maps
1.2 Classes of smoothness of maps of Cartesian spaces
1.3 Smooth structure, smooth manifold
1.4 Smooth maps of manifolds
1.5 A technical description of smooth surfaces in Rn
Summary of Chapter 1
2 Vector and tensor fields
2.1 Curves and functions on M
2.2 Tangent space, vectors and vector fields
2.3 Integral curves of a vector field
2.4 Linear algebra of tensors (multilinear algebra)
2.5 Tensor fields on M
2.6 Metric tensor on a manifold
Summary of Chapter 2
3 Mappings of tensors induced by mappings of manifolds
3.1 Mappings of tensors and tensor fields
3.2 Induced metric tensor
Summary of Chapter 3
4 Lie derivative
4.1 Local flow of a vector field
4.2 Lie transport and Lie derivative
4.3 Properties of the Lie derivative
4.4 Exponent of the Lie derivative
4.5 Geometrical interpretation of the commutator [V, W], non-holonomic frames
4.6 Isometries and conformal transformations, Killing equations
Summary of Chapter 4
5 Exterior algebra
5.1 Motivation: volumes of paraUelepipeds
5.2 p-forms and exterior product
5.3 Exterior algebra AL*
5.4 Interior product iv
5.5 Orientation in L
5.6 Determinant and generalized Kronecker symbols
5.7 The metric volume form
5.8 Hodge (duality) operator*
Summary of Chapter 5
6 Differential calculus of forms
6.1 Forms on a manifold
6.2 Exterior derivative
6.3 Orientability, Hodge operator and volume form on M
6.4 V-valued forms
Summary of Chapter 6
7 Integral calculus of forms
7.1 Quantities under the integral sign regarded as differential forms
7.2 Euclidean simplices and chains
7.3 Simplices and chains on a manifold
7.4 Integral of a form over a chain on a manifold
7.5 Stokes' theorem
7.6 Integral over a domain on an orientable manifold
7.7 Integral over a domain on an orientable Riemannian manifold
7.8 Integral and maps of manifolds
Summary of Chapter 7
8 Particular cases and applications of Stokes' theorem
8.1 Elementary situations
8.2 Divergence of a vector field and Gauss' theorem
8.3 Codifferential and LaPlace-deRhana operator
8.4 Green identities
8.5 Vector analysis in E3
8.6 Functions of complex variables
Summary of Chapter 8
9 Poincare lemma and cohomologies
9.1 Simple examples of closed non-exact forms
9.2 Construction of a potential on contractible manifolds
9.3* Cohomologies and deRham complex
Summary of Chapter 9
10 Lie groups: basic facts
10.1 Automorphisms of various structures and groups
10.2 Lie groups: basic concepts
Summary of Chapter 10
11 Differential geometry on Lie groups
11.1 Left-invariant tensor fields on a Lie group
11.2 Lie algebra g of a group G
11.3 One-parameter subgroups
11.4 Exponential map
11.5 Derived homomorphism of Lie algebras
11.6 Invariant integral on G
11.7 Matrix Lie groups: enjoy simplifications
Summary of Chapter 11
12 Representations of Lie groups and Lie algebras
12.1 Basic concepts
12.2 Irreducible and equivalent representations, Schur's lemma
12.3 Adjoint representation, Killing-Cartan metric
12.4 Basic constructions with groups, Lie algebras and their representations
12.5 Invariant tensors and intertwining operators
12.6* Lie algebra cohomologies
Summary of Chapter 12
13 Actions of Lie groups and Lie algebras on manifolds
13.1 Action of a group, orbit and stabilizer
13.2 The structure of homogeneous spaces, G/H
13.3 Covering homomorphism, coverings SU(2) →SO(3) andSL(2, C)→ L↑+
13.4 Representations of G and g in the space of functions on a G-space, fundamental fields
13.5 Representations of G and g in the space of tensor fields of type p
Summary of Chapter 13
14 Hamiltonian mechanics and symplectic manifolds
14.1 Poisson and sympl
节选
微分几何在现代理论物理和应用数学中扮演着越来越重要的角色。《物理学家用的微分几何和李群》给出了在理论物理和应用数学中很重要的几何知识的引入,包括,流形、张量场、微分形式、联络、辛几何、李群作用、族以及自旋。《物理学家用的微分几何和李群》以一种非正式的形式写作,作者给出了1000多例子重在强调对一般理论的深刻理解。《物理学家用的微分几何和李群》将要为读者很好的学习拉格郎日现代处理方法、哈密顿力学、电磁、规范场,相对论以及万有引力做充足的准备。《物理学家用的微分几何和李群》很适合作为物理、数学以及工程专业的高年级本科生以及研究生的教程,也是一本很难得自学教程。
-
造就适者——DNA和进化的有力证据
¥17.5¥55.0 -
声音简史
¥19.7¥52.0 -
世纪幽灵-走近量子纠缠
¥11.0¥28.0 -
数学的魅力;初等数学概念演绎
¥9.4¥22.0 -
昆虫的生存之道
¥12.4¥38.0 -
袁隆平口述自传
¥18.3¥51.0 -
昆虫采集制作及主要目科简易识别手册
¥16.0¥50.0 -
古文诗词中的地球与环境事件
¥9.4¥28.0 -
递归求解
¥9.4¥28.0 -
成语与地理科学
¥10.6¥30.0 -
传播.以思想的速度-爱因斯坦与引力波
¥10.3¥29.0 -
勒维特之星-大发现系列丛书
¥5.0¥16.0 -
巧工创物〈考工记〉白话图解
¥9.4¥22.8 -
科学之死:20世纪科学哲学思想简史
¥19.0¥50.0 -
图解二十四节气知识(新版)
¥25.5¥68.0 -
景观生态学-(第2版)
¥27.9¥49.0 -
低温物理学
¥6.9¥22.0 -
等效
¥11.6¥28.0 -
星空探奇
¥12.7¥39.0 -
几何原本
¥36.6¥93.6