图文详情
- ISBN:9787030245625
- 装帧:一般胶版纸
- 册数:暂无
- 重量:暂无
- 开本:16开
- 页数:254
- 出版时间:2009-05-01
- 条形码:9787030245625 ; 978-7-03-024562-5
本书特色
全书共分两卷,涉及的面很广,可以说概括了1920—1940年代数学的 主要成就,也包括了1940年以后代数学的新进展,是代数学的经典著作之 一。本书是**卷,分成11章:前5章以小的篇幅包括了为所有其余各章 作准备的知识,即有关集合、群、环、域、向量空间和多项式的*基本的 概念;其余各章主要讲述交换域的理论,包括galois理论和实域。
内容简介
《代数学1》共分两卷,涉及的面很广,可以说概括了1920—1940年代数学的主要成就,也包括了1940年以后代数学的新进展,是代数学的经典著作之一《代数学1》是**卷,分成11章:前5章以小的篇幅包括了为所有其余各章作准备的知识,即有关集合、群、环、域、向量空间和多项式的基本的概念;其余各章主要讲述交换域的理论,包括Galois理论和实域。
目录
引言
第1章 数与集合
1.1 集合
1.2 映射,势
1.3 自然数序列
1.4 有限与可数集合
1.5 分类
第2章 群
2.1 群的概念
2.2 子群
2.3 群子集的运算,陪集
2.4 同构与自同构
2.5 同态,正规子群,商群
第3章 环与域
3.1 环
3.2 同态与同构
3.3 商的构成
3.4 多项式环
3.5 理想,同余类环
3.6 整除性,素理想
3.7 euclid环与主理想环
3.8 因子分解
第4章 向量空间和张量空间
4.1 向量空间
4.2 维数不变性
4.3 对偶向量空间
4.4 体上的线性方程组
4.5 线性变换
4.6 张量
4.7 反对称双线性型与行列式
4.8 张量积,缩并与迹
第5章 多项式
5.1 微分法
5.2 多项式的零点
5.3 内插公式
5.4 因子分解
5.5 不可约性判定标准
5.6 因子分解在有限步下的完成
5.7 对称函数
5.8 两个多项式的结式
5.9 结式作为根的对称函数
5.10 有理函数的部分分式分解
第6章 域论
6.1 子体,素体
6.2 添加
6.3 单纯域扩张
6.4 域的有限扩张
6.5 域的代数扩张
6.6 单位根
6.7 galois域(有限域)
6.8 可分与不可分扩张
6.9 完全域及不完全域
6.10 代数扩张的单纯性,本原元素定理
6.11 范数与迹
第7章 群论续
7.1 带算子的群
7.2 算子同构和算子同态
7.3 两个同构定理
7.4 正规群列与合成群列
7.5 pn阶群
7.6 直积
7.7 群的特征标
7.8 交错群的单纯性
7.9 可迁性与本原性
第8章 galois理论
8.1 galois群
8.2 galois理论的基本定理
8.3 共轭的群、域与域的元素
8.4 分圆域
8.5 循环域与纯粹方程
8.6 用根式解方程
8.7 n次一般方程
8.8 二次、三次与四次方程
8.9 圆规与直尺作图
8.10 galois群的计算,具有对称群的方程
8.11 正规基
第9章 集合的序与良序
9.1 有序集合
9.2 选择公理与zorn引理
9.3 良序定理
9.4 超限归纳法
第10章 无限域扩张
10.1 代数封闭域
10.2 单纯超越扩域
10.3 代数相关性与无关性
10.4 超越次数
10.5 代数函数的微分法
第11章 实域
11.1 有序域
11.2 实数的定义
11.3 实函数的零点
11.4 复数域
11.5 实域的代数理论
11.6 关于形式实域的存在定理
11.7 平方和
索引
第1章 数与集合
1.1 集合
1.2 映射,势
1.3 自然数序列
1.4 有限与可数集合
1.5 分类
第2章 群
2.1 群的概念
2.2 子群
2.3 群子集的运算,陪集
2.4 同构与自同构
2.5 同态,正规子群,商群
第3章 环与域
3.1 环
3.2 同态与同构
3.3 商的构成
3.4 多项式环
3.5 理想,同余类环
3.6 整除性,素理想
3.7 euclid环与主理想环
3.8 因子分解
第4章 向量空间和张量空间
4.1 向量空间
4.2 维数不变性
4.3 对偶向量空间
4.4 体上的线性方程组
4.5 线性变换
4.6 张量
4.7 反对称双线性型与行列式
4.8 张量积,缩并与迹
第5章 多项式
5.1 微分法
5.2 多项式的零点
5.3 内插公式
5.4 因子分解
5.5 不可约性判定标准
5.6 因子分解在有限步下的完成
5.7 对称函数
5.8 两个多项式的结式
5.9 结式作为根的对称函数
5.10 有理函数的部分分式分解
第6章 域论
6.1 子体,素体
6.2 添加
6.3 单纯域扩张
6.4 域的有限扩张
6.5 域的代数扩张
6.6 单位根
6.7 galois域(有限域)
6.8 可分与不可分扩张
6.9 完全域及不完全域
6.10 代数扩张的单纯性,本原元素定理
6.11 范数与迹
第7章 群论续
7.1 带算子的群
7.2 算子同构和算子同态
7.3 两个同构定理
7.4 正规群列与合成群列
7.5 pn阶群
7.6 直积
7.7 群的特征标
7.8 交错群的单纯性
7.9 可迁性与本原性
第8章 galois理论
8.1 galois群
8.2 galois理论的基本定理
8.3 共轭的群、域与域的元素
8.4 分圆域
8.5 循环域与纯粹方程
8.6 用根式解方程
8.7 n次一般方程
8.8 二次、三次与四次方程
8.9 圆规与直尺作图
8.10 galois群的计算,具有对称群的方程
8.11 正规基
第9章 集合的序与良序
9.1 有序集合
9.2 选择公理与zorn引理
9.3 良序定理
9.4 超限归纳法
第10章 无限域扩张
10.1 代数封闭域
10.2 单纯超越扩域
10.3 代数相关性与无关性
10.4 超越次数
10.5 代数函数的微分法
第11章 实域
11.1 有序域
11.2 实数的定义
11.3 实函数的零点
11.4 复数域
11.5 实域的代数理论
11.6 关于形式实域的存在定理
11.7 平方和
索引
展开全部
本类五星书
浏览历史
本类畅销
-
勒维特之星-大发现系列丛书
¥4.0¥16.0 -
喜马拉雅山珍稀鸟类图鉴
¥23.8¥68.0 -
昆虫的生存之道
¥19.1¥38.0 -
古文诗词中的地球与环境事件
¥8.4¥28.0 -
昆虫采集制作及主要目科简易识别手册
¥20.5¥50.0 -
声音简史
¥18.7¥52.0 -
物理学之美-插图珍藏版
¥30.4¥69.0 -
不匹配的一对:动物王国的性别文化
¥13.7¥42.8 -
现代物理学的概念和理论
¥23.1¥68.0 -
数学的魅力;初等数学概念演绎
¥13.0¥22.0 -
技术史入门
¥20.6¥48.0 -
改变世界的发现
¥15.4¥48.0 -
为了人人晓得相对论
¥4.6¥13.5 -
图说相对论(32开平装)
¥19.8¥46.0 -
舟山群岛植物图志
¥20.1¥59.0 -
宇宙与人
¥10.5¥35.0 -
数学专题讲座
¥11.0¥29.0 -
布尔巴基-数学家的秘密社团
¥11.4¥38.0 -
一代神话:哥本哈根学派
¥6.7¥15.5 -
考研数学高频考点精选题
¥1.2¥3.2