
包邮Probability and Stochastic Processes
1星价
¥31.5
(7.0折)
2星价¥31.5
定价¥45.0

暂无评论
图文详情
- ISBN:9787563545377
- 装帧:一般胶版纸
- 册数:暂无
- 重量:暂无
- 开本:16开
- 页数:324
- 出版时间:2016-01-01
- 条形码:9787563545377 ; 978-7-5635-4537-7
内容简介
《概率论与随机过程(英文版)》系统地介绍概率论与随机过程的基本概念、基本方法、基本理论以及应用。《概率论与随机过程(英文版)》分为8章。前4章介绍概率论的一般知识及应用,后四章介绍随机过程的一般知识及应用。 《概率论与随机过程(英文版)》注重概念之间的联系和背景介绍,强调知识的应用,而且《概率论与随机过程(英文版)》所有内容是自包含的,讲述浅显易懂,便于自学。 《概率论与随机过程(英文版)》供非数学专业、应用型本科理工类一学期(64—72学时)学习使用。
目录
Chapter 1 Events and Their Probabilities
1.1 The History of Probability
1.2 Experiment, Sample Space and Random Event
1.2.1 Basic Definitions
1.2.2 Events as Sets
1.3 Probabilities Defined on Events
1.3.1 Classical Probability
1.3.2 Geometric Probability
1.3.3 The Frequency Interpretation of Probability
1.4 Probability Space
1.4.1 Axiomatic Definition of Probability
1.4.2 Properties of Probability
1.5 Conditional Probabilities
1.5.1 The Definition of Conditional Probability
1.5.2 The Multiplication Rule
1.5.3 Total Probability Formula
1.5.4 Bayes' Theorem
1.6 Independence of Events
1.6.1 Independence of Two Events
1.6.2 Independence of Several Events
1.6.3 Bernoulli Trials
1.7 Review
1.8 Exercises
Chapter 2 Random Variable
2.1 The Definition of a Random Variable
2.2 The Distribution Function of a Random Variable
2.2.1 The Definition and Properties of Distribution Function . . .
2.2.2 The Distribution Function of Function of a Random Variable
2.3 Mathematical Expectation and Variance
2.3.1 Expectation of a Random Variable
2.3.2 Expectation of Functions of a Random Variable
2.3.3 Variance of a Random Variable
2.3.4 The Application cf Expectation and Variation
2.4 Discrete Random Variables
2.4.1 Binomial Distribution with Parameters n and p
2.4.2 Geometric Distribution
2.4.3 Poisscn Distribution with Parameters
2.5 Continuous Rsndom Variables
2.5.1 Uniform Distribution
2.5.2 Exponential Distribution
2.5.3 Normal Distribution
2.6 Review
2.7 Exerciscs
Chapter 3 Random Vectors
3.1 Random Vectors and Joint Distributions
3.1.1 Random Vectors and Joint Distributions
3.1.2 Discrete Random Vectors
3.1.3 Continuous Random Vectors
3.2 Independence cf Random Variables
3.3 Conditional Distributions
3.3.1 Discrete Case
3.3.2 Continuous Case
3.4 One Function of Two Random Variables
3.4.1 Discrete Case
3.4.2 Continuous case
3.5 Transformation of Two Random Variables
3.6 Numerical Charscteristics of Random Vectors
3.6.1 Expectation cf Sums and PIoducts
3.6.2 Covariance and Correlation
3.7 Multivariate Distributions
3.7.1 Distribution Functions of Multiple Random Vectors
3.7.2 Numerical Characteristics of Random Vectors
3.7.3 Multiple Normal Distribution
3.8 Review
3.9 Exercises
Chapter 4 Sequences of Random Variables
4.1 Family of Distribution Functions and Numerical Characteristics
4.2 Modes of Convergence
4.3 The Law of Large Numbers
4.4 The Central Limit Theorem
4.5 Review
4.6 Exercises
Chapter 5 Introduction to Stochastic Processes
5.1 Definition and Classification
5.2 The Distribution Family and the Moment Functions
5.3 The Moments of the Stochastic Processes
5.3.1 Mean, Autocorrelation and Autocovariance
5.3.2 Cross-correlation and Cross-covariance
5.4 Stochastic Analysis
5.5 Review
5.6 Exercises
Chapter 6 Stationary Processes
6.1 Stationary Processes
6.1.1 Strict Stationary Processes
6.1.2 Wide Stationary Processes
6.1.3 Joint Stationary Processes
6.2 Ergodicity of Stationary Processes
6.3 Power Spectral Density of Stationary Processes
6.3.1 Average Power and Power Spectral Density
6.3.2 Power Spectral Density and Autocorrelation Function
6.3.3 Cross-Power Spectral Density
6.4 Stationary Processes and Linear Systems
6.5 Review
6.6 Exercises
Chapter 7 Finite Markov Chains
7.1 Basic Concepts
7.2 Markov Chains Having Two States
7.3 Higher Order Transition Probabilities and Distributions
7.4 Invariant Distributions and Ergodic Markov Chain
7.5 How Does Google Work?
7.6 Review
7.7 Exercises
Chapter 8 Independent-Increment Processes
8.1 Independent-Increment Processes
8.2 Poisson Process
8.3 Gaussian Processes
8.4 Brownian Motion and Wiener Processes
8.5 Review
8.6 Exercises
Bibliography
Appendix
Table of Binomial Cofficients
Table of Binomial Probabilities
Table of Poisson Probabilities
Table of Normal Probabilities
1.1 The History of Probability
1.2 Experiment, Sample Space and Random Event
1.2.1 Basic Definitions
1.2.2 Events as Sets
1.3 Probabilities Defined on Events
1.3.1 Classical Probability
1.3.2 Geometric Probability
1.3.3 The Frequency Interpretation of Probability
1.4 Probability Space
1.4.1 Axiomatic Definition of Probability
1.4.2 Properties of Probability
1.5 Conditional Probabilities
1.5.1 The Definition of Conditional Probability
1.5.2 The Multiplication Rule
1.5.3 Total Probability Formula
1.5.4 Bayes' Theorem
1.6 Independence of Events
1.6.1 Independence of Two Events
1.6.2 Independence of Several Events
1.6.3 Bernoulli Trials
1.7 Review
1.8 Exercises
Chapter 2 Random Variable
2.1 The Definition of a Random Variable
2.2 The Distribution Function of a Random Variable
2.2.1 The Definition and Properties of Distribution Function . . .
2.2.2 The Distribution Function of Function of a Random Variable
2.3 Mathematical Expectation and Variance
2.3.1 Expectation of a Random Variable
2.3.2 Expectation of Functions of a Random Variable
2.3.3 Variance of a Random Variable
2.3.4 The Application cf Expectation and Variation
2.4 Discrete Random Variables
2.4.1 Binomial Distribution with Parameters n and p
2.4.2 Geometric Distribution
2.4.3 Poisscn Distribution with Parameters
2.5 Continuous Rsndom Variables
2.5.1 Uniform Distribution
2.5.2 Exponential Distribution
2.5.3 Normal Distribution
2.6 Review
2.7 Exerciscs
Chapter 3 Random Vectors
3.1 Random Vectors and Joint Distributions
3.1.1 Random Vectors and Joint Distributions
3.1.2 Discrete Random Vectors
3.1.3 Continuous Random Vectors
3.2 Independence cf Random Variables
3.3 Conditional Distributions
3.3.1 Discrete Case
3.3.2 Continuous Case
3.4 One Function of Two Random Variables
3.4.1 Discrete Case
3.4.2 Continuous case
3.5 Transformation of Two Random Variables
3.6 Numerical Charscteristics of Random Vectors
3.6.1 Expectation cf Sums and PIoducts
3.6.2 Covariance and Correlation
3.7 Multivariate Distributions
3.7.1 Distribution Functions of Multiple Random Vectors
3.7.2 Numerical Characteristics of Random Vectors
3.7.3 Multiple Normal Distribution
3.8 Review
3.9 Exercises
Chapter 4 Sequences of Random Variables
4.1 Family of Distribution Functions and Numerical Characteristics
4.2 Modes of Convergence
4.3 The Law of Large Numbers
4.4 The Central Limit Theorem
4.5 Review
4.6 Exercises
Chapter 5 Introduction to Stochastic Processes
5.1 Definition and Classification
5.2 The Distribution Family and the Moment Functions
5.3 The Moments of the Stochastic Processes
5.3.1 Mean, Autocorrelation and Autocovariance
5.3.2 Cross-correlation and Cross-covariance
5.4 Stochastic Analysis
5.5 Review
5.6 Exercises
Chapter 6 Stationary Processes
6.1 Stationary Processes
6.1.1 Strict Stationary Processes
6.1.2 Wide Stationary Processes
6.1.3 Joint Stationary Processes
6.2 Ergodicity of Stationary Processes
6.3 Power Spectral Density of Stationary Processes
6.3.1 Average Power and Power Spectral Density
6.3.2 Power Spectral Density and Autocorrelation Function
6.3.3 Cross-Power Spectral Density
6.4 Stationary Processes and Linear Systems
6.5 Review
6.6 Exercises
Chapter 7 Finite Markov Chains
7.1 Basic Concepts
7.2 Markov Chains Having Two States
7.3 Higher Order Transition Probabilities and Distributions
7.4 Invariant Distributions and Ergodic Markov Chain
7.5 How Does Google Work?
7.6 Review
7.7 Exercises
Chapter 8 Independent-Increment Processes
8.1 Independent-Increment Processes
8.2 Poisson Process
8.3 Gaussian Processes
8.4 Brownian Motion and Wiener Processes
8.5 Review
8.6 Exercises
Bibliography
Appendix
Table of Binomial Cofficients
Table of Binomial Probabilities
Table of Poisson Probabilities
Table of Normal Probabilities
展开全部
本类五星书
浏览历史
本类畅销
-
北大人文课(平装)
¥12.9¥45.0 -
落洼物语
¥9.4¥28.0 -
当代中国政府与政治(新编21世纪公共管理系列教材)
¥31.2¥48.0 -
中医基础理论
¥51.7¥59.0 -
“十三五”普通高等教育本科部委级规划教材西方服装史(第3版)
¥16.9¥49.8 -
剧本写作教程
¥15.4¥45.0 -
唐诗经典研读
¥21.9¥58.0 -
马克思主义基本原理(2023年版)
¥14.6¥23.0 -
精读韩国新闻,学地道韩语韩国新闻导读教程
¥13.6¥36.0 -
犯罪学
¥15.2¥39.0 -
房屋建筑学(第六版)(赠教师课件,含数字资源)
¥47.5¥62.0 -
当代中国政府与政治 第二版
¥58.8¥68.0 -
新能源汽车综合故障诊断
¥32.8¥49.0 -
政策科学——公共政策分析导论(第二版)
¥57.2¥78.0 -
(本科教材)西方哲学简史
¥38.7¥58.0 -
马克思恩格斯列宁哲学经典著作导读(第2版马克思主义理论研究和建设工程重点教材)
¥37.6¥61.0 -
全国中医药行业高等教育经典老课本中药学新世纪第2版
¥45.9¥69.0 -
现代汉语语法研究教程-第五版
¥39.3¥59.0 -
博雅大学堂·历史中国古代简史(第2版)/张帆
¥38.8¥60.0 -
普通心理学学习手册
¥20.8¥36.0