暂无评论
图文详情
- ISBN:9787030564832
- 装帧:一般胶版纸
- 册数:暂无
- 重量:暂无
- 开本:16开
- 页数:440
- 出版时间:2018-03-01
- 条形码:9787030564832 ; 978-7-03-056483-2
内容简介
Guangli Huang、Victor F.Melnikov、Haisheng Ji、Zongjun Ning编著的《太阳耀斑环--观测与理解(英文版)(精)》提供了典型的太阳事件的分析结果,统计分析,高能电子和磁场的诊断以及全球行为太阳耀斑的循环,例如收缩和膨胀。特别注意用微波、硬X射线、光学和EUV辐射分析太阳耀斑回路,以及它们的辐射理论和电子加速/传输理论。结果关于非热电子的俯仰角各向异性对其影响的研究微波和硬X射线辐射、X射线和微波的新光谱行为带,以及与扩张环的收缩有关的结果,被广泛讨论。太阳物理学文献。这本书对研究生和研究人员很有用。在太阳和太空物理学中。
目录
1 Introduction
References
2 Theory of MW Emissions of Solar Flaring Loops
2.1 Observational Characteristics of Solar Microwave Emissions
2.1.1 Intensity, Polarization, and Spectrum of MW
Emission
2.1.2 Radiation Transfer
2.1.3 Thermal and Nonthermal (NT) Emission
2.2 Gyrosynchrotron (GS) Emission
2.2.1 Emissivity and Self-absorption Coefficient
2.2.2 Formation of GS Spectrum
2.2.3 Influence of Magnetic Field Strength
2.2.4 Influence of Self-Absorption
2.2.5 Influence of High Plasma Density: Razin Effect
2.2.6 Razin Effect and Electron Power-Law Index
2.2.7 Plasma Density Increase on the Late Decay Phase..
2.2.8 Influence of Plasma Inhomogeneity on GS Spectrum
2.3 Effects of Electron Pitch-Angle Anisotropy
2.3.1 Parameters of Numerical Simulation
2.3.2 Pitch-Angle Distributions of Sinu Type
2.3.3 Effect of Pitch-Angle Distribution Shape: Gaussian
Loss-Cone
2.3.4 Effect of Pitch-Angle Distribution Shape: Beam-like
Distribution
2.3.5 Discussion
2.4 Trapping and Transport Effects
2.4.1 Dependence on the Position of Acceleration/Injection
Site
2.4.2 Spectral an Polarization Responses to Specific Electron
Distributions
2.4.3 Diagnostic Potential
2.5 Effects of Other Parameters on GS Emission
2.5.1 Spectral Shape
2.5.2 Radio Flux Density
2.5.3 Spectral Index
2.5.4 Turnover Frequency
2.6 Numerical Codes for Fast GS Emission Calculations
References
3 Observations and Explanations of MW Emissions in Solar Flaring
Loops
3.1 Studies on Spatially Unresolvable Observations
3.1.1 Flattened Spectra in Solar Radio Bursts at Cm and Mm
Bands and Dynamics of Energetic Electrons in Flaring
Loops
3.1.2 Dynamics of Peak Frequency in Solar MW Bursts:
Self-absorption and Razin Effect
3.1.3 Optically Thin Emission, Power-Law Distribution of
Flares, and Occurrence Rate of Flares
3.2 Spatial Distribution of Microwave Brightness
3.2.1 Nonthermal MW Source at the Top of Extended Flaring
Loops
3.2.2 Time Delays Between MW Emissions from Different
Parts of Flaring Loop
3.2.3 Time Delays of MW Emissions at Different
Frequencies
3.2.4 Redistribution of MW Brightness in Flaring Loops
3.2.5 Comparison of Observations and Model Predictions
3.2.6 Spatial Distribution of Energetic Electrons in Flaring
Loops
3.2.7 Dynamics of Electron Spatial Distribution
3.2.8 Constraints on Particle Acceleration, Projection,
and Motion
3.3 Statistical Studies on MW Brightness Distributions
3.3.1 Data Selection
3.3.2 Comparison of MW Brightness in LT and FPs
3.3.3 Relation of MW Brightness and Other Parameters
3.3.4 Asymmetry of MW Brightness in Flaring Loop FPs
3.4 Spectral Properties of MW Emissions
3.4.1 Distribution of Spectral Slopes Along Flaring Loops
3.4.2 Statistics of Optically Thin Spectral Indices of MW
Emissions in LT and FPs
3.4.3 Hard-Soft-Hard (HSH)--a New Pattern of MW Spectral
Evolution
3.4.4 Dependence of Spectral Evolution on Frequencies
3.4.5 Evolution of MW Spectra in Different Parts of Flaring
Loops
3.5 Distribution and Evolution of Radio Polarization
3.5.1 Comparison of Polarization of MW Emissions in LT
and FPs
3.5.2 Relation of Polarization and Other Parameters in LT
and FPs
3.5.3 Relation of Polarization and Magnetic Field in LT
and FPs
3.5.4 Time Variation of Polarization in LT and FPs
3.5.5 Linear Mode Coupling and Reversal of Polarization
3.5.6 Determination of Intrinsic Mode
3.5.7 Modeling the MW Polarization Distribution Along
Flaring Loops
References
Theory of X-Ray Emissions in Solar Flaring Loops
4.1 Thick-Target and Thin-Target Models
4.1.1 Overview
4.1.2 Thin-Target Model
4.1.3 Thick-Target Model
4.1.4 Relation of Two Models
4.1.5 Effect of Low-Energy Cutoff on Spectral Indices of
Electrons and Photons
4.2 Propagation of Electrons and Its Effect on X-Ray Emission
4.2.1 Overview
4.2.2 Magnetic Mirror and Loss-Cone Distribution
4.2.3 Formation of Loss-Cone Distribution
4.3 Spatial Distribution of X-Ray and 7-Ray Brightness
4.3.1 Numerical Simulations of Spatial Distribution of
Energetic Electrons in Flaring Loops
4.3.2 Simulated Results of Spatial Distribution of X-Rays
and y-Rays
4.3.3 Conclusions
4.4 Spatial Distribution of X-Ray Directivity and Polarization
4.4.1 Modeling
4.4.2 Directivity at Different Positions in Flaring Loops
4.4.3 Polarization at Different Positions in Flaring Loops
4.4.4 Conclusions
References
5 Observations and Explanations of X-Ray Emissions in Flaring
Loops
5.1 Overview
5.2 Distribution of Hard X-Ray (HXR) Brightness: Loop Top
and Feet
5.3 Spectral Index of HXR Emissions: Loop Top and Feet
5.4 A New Pattern of HXR Spectral Evolution
5.5 Evolution of HXR Spectra in Dependence of Energies
5.6 Evolution of HXR Spectra in Dependence of Locations
5.7 Asymmetry of HXR Brightness in Flaring Loop Feet
References
6 Diagnostics of Flaring Loop Parameters
6.1 Overview
6.2 Diagnosis of Coronal Magnetic Field and Non-thermal
Electron Density
6.2.1 Diagnosis Method
6.2.2 Sudden Change of Transverse Coronal Magnetic
Component Around Magnetic Neutral Line
6.2.3 Attenuation of Coronal Magnetic Field in Solar MW
Bursts
6.2.4 Evolution of Turnover Frequency and Magnetic field
with Flattened Optically Thin Spectra
6.2.5 Theoretical Scaling Laws of Coronal Magnetic Field
and Electron Power-Law Index in Corona
6.2.6 Comparison of Radio Diagnosis with Extrapolation
of Solar Photospheric Magnetogram
6.2.7 Summary and Prospective
6.3 Diagnosis of Low-Energy Cutoff and Spectral Index of NT
Electrons
6.3.1 Meaning and Debate of Low-Energy Cutoff
6.3.2 Cross Point of Spectral Lines at Different Times
6.3.3 Relation of Low-Energy Cutoff and Ratio of Radiation
Intensities or Spectral Index
6.3.4 Joint Effect of Low-Energy Cutoff and Compton
Scattering on Flattened Spectra at Lower Energies
6.3.5 Low-Energy Cutoff and Spectral Index of MW and HXR
with Two Methods
6.3.6 Low-Energy Cutoff and Spectral Index of MW and HXR
with Strict Methods
6.3.7 Discussions and Conclusions
6.4 Diagnosis of Pitch-Angle of NT Electrons
6.4.1 Overview
6.4.2 Diagnosis of Mirror Ratio of Coronal Loops
6.4.3 Diagnosis of Initial Pitch-Angle
6.5 Evidence for Dynamic Evolution of Energetic Electron
Spectrum
6.5.1 Overview
6.5.2 Theoretical Prediction of MW and HXR Spectral
Evolution
6.5.3 Observational Data
6.5.4 Theoretical Simulation of Electron Spectral Evolution
in MW Sources
6.5.5 Conclusions
6.6 Diagnosis of Acceleration Site and Pitch-Angle Distribution
of Accelerated Electrons
6.6.1 Overview
6.6.2 Observations
6.6.3 Evolution of Brightness Distribution
6.6.4 Discussions
6.6.5 Conclusions
6.7 Inversion of NT Electron Spectral Index
6.7.1 Overview
6.7.2 Comparison of NT Spectral Indices of MW and X-Ray
Emissions in Solar Flares
6.7.3 Summary
6.8 Radio Diagnostics of the Solar Flaring Loop Parameters
6.8.1 Method for Recovering Flaring Loop Parameters
6.8.2 Determination of Model Radio Source Parameters
6.8.3 Recovering Physical Parameters of Solar Flaring
Loops
6.8.4 Conclusions
References
7 Global Behaviors for Dynamics of Flaring Loops
7.1 Global Behaviors Revealed by Observations
at Multi-wavebands
7.1.1 Contraction of Flaring Loops prior to Their Expansion
7.1.2 The Relaxation of Sheared Magnetic Field
7.1.3 Possible Impact on the Lower Atmosphere
7.1.4 Sigmoid Magnetic Ropes
7.2 Failed Eruption of Filaments
7.3 Dynamics of MW and HXR Flaring Loop System
7.3.1 Introduction
7.3.2 Observations
7.3.3 Morphological Feature of AR10798 at H-Alpha
and EUV in Pre-flare Phase
7.3.4 Radio, Optical, and X-Ray Images of Flaring Loops
7.3.5 Time Profiles
7.3.6 Evolution of Spatial Characteristic Parameters
7.3.7 Trajectories of Flaring Loop Top and Feet
7.3.8 Discussions
7.3.9 Conclusions
7.4 Quasi-periodic Pulsations (QPPs) in Microwave Band
7.4.1 Types of QPPs in Microwave Band
7.4.2 Theoretical Explanations of QPPs
7.4.3 Relation of Repetition Rate and Burst Flux in QPPs
7.5 Motion of X-Ray Sources Along Flaring Loops
7.5.1 Overview
7.5.2 Motion of X-Ray Sources Along Flaring Loops
7.5.3 Summary
7.6 Interaction of Flaring Loops
7.6.1 Typical Examples of Loop Interaction
7.6.2 Statistical Evidence of Loop Interaction
7.6.3 Conclusions
7.7 Numerical Models and Observations of Chromosphere
Evaporation
7.7.1 Introduction
7.7.2 Numerical Models
7.7.3 Observations of Chromospheric Evaporation
7.7.4 X-Ray and Radio Imaging Observations
7.7.5 Summary
References
Appendix: Color Figures
Index
展开全部
本类五星书
本类畅销
-
内向者的沟通课
¥20.6¥42.0 -
富爸爸穷爸爸
¥31.2¥89.0 -
学理:像理科大师一样思考
¥28.2¥48.0 -
底层逻辑:看清这个世界的底牌
¥61.4¥69.0 -
畅销的原理:为什么好观念、好产品会一炮而红?(八品)
¥13.5¥45.0 -
以利为利:财政关系与地方政府行为
¥60.1¥78.0 -
投资人和你想的不一样
¥20.8¥65.0 -
文案高手
¥18.7¥36.0 -
麦肯锡高效工作法(八品)
¥19.2¥52.0 -
逆势突围
¥18.4¥68.0 -
麦肯锡底层领导力/(英)克劳迪奥·费泽,(英)迈克尔·伦尼,(英)尼古莱·陈·尼尔森
¥37.4¥68.0 -
麦肯锡逻辑思考法
¥32.8¥49.8 -
鹤老师说经济:揭开财富自由的底层逻辑
¥26.7¥65.0 -
学会提问
¥46.9¥69.0 -
事实
¥38.0¥69.0 -
领导学全书柯维领导培训中心
¥18.4¥68.0 -
沃顿商学院最受欢迎的谈判课
¥18.6¥69.0 -
央企真相
¥23.8¥58.0 -
故事力法则
¥14.4¥48.0 -
黑天鹅:如何应对不可预知的未来
¥41.4¥69.0