机器学习导论(高等学校电子信息类专业系列教材)
- ISBN:9787302594727
- 装帧:一般胶版纸
- 册数:暂无
- 重量:暂无
- 开本:16开
- 页数:401
- 出版时间:2022-01-01
- 条形码:9787302594727 ; 978-7-302-59472-7
本书特色
机器学习具有多学科交叉的特点,是当前学术界和工业界均关注的热点领域,其应用范围十分广泛,已经成为一种解决诸多问题的有效工具。本书以理工科高年级本科生和低年级研究生的基础知识为立足点,以面向工程应用为目标,是一本综合性的机器学习教程。 本书既反映机器学习的基础知识和经典方法,又重视深度学习和强化学习的知识内容,使读者不仅能在机器学习领域打下坚实的基础,同时也可以利用所学知识解决遇到的实际问题并进入学科前沿。本书的主要内容包括: ?? 机器学习理论概述; ?? 机器学习的统计与优化基础; ?? 基本回归与分类学习算法; ?? 支持向量机; ?? 决策树与集成学习; ?? 无监督学习算法; ?? 神经网络与深度学习; ?? 深度学习专题(GAN、Transformer等); ?? 强化学习与深度强化学习。 教学资源 ?? 微课视频 ?? 教学大纲 ?? 教学课件 ?? 习题解答
内容简介
《机器学习导论/高等学校电子信息类专业系列教材》对机器学习的基础知识和基本算法进行了详细的介绍,对广泛应用的经典算法(如线性回归、逻辑回归、朴素贝叶斯、支持向量机、决策树和集成学习等)进行了深入的分析,并讨论了无监督学习的基本方法。用5章对深度学习和深度强化学习进行了相当全面的叙述,不仅深入地讨论了反向传播算法、多层感知机、卷积神经网络、循环神经网络和长短期记忆网络等深度神经网络的核心知识和结构,对于一些发展中的专题(如生成对抗网络和Transformer等)也给予了一定深度的介绍。对于强化学习,不仅介绍了经典表格方法,也较详细地讨论了深度强化学习。 《机器学习导论/高等学校电子信息类专业系列教材》对于基础和前沿、经典方法和热门技术尽可能平衡,使读者不仅能在机器学习领域打下一个良好的基础,同时也可以利用所学知识解决遇到的实际问题并进入学科前沿。 《机器学习导论/高等学校电子信息类专业系列教材》是一本面向大学理工科和管理类各专业的宽口径、综合性的机器学习教材,可供高年级本科生和研究生使用,也可帮助科技人员、工程师和程序员自学机器学习的原理和算法。 机器学习具有多学科交叉的特点,是当前学术界和工业界均关注的热点领域,其应用范围十分广泛,已经成为一种解决诸多问题的有效工具。 《机器学习导论/高等学校电子信息类专业系列教材》以理工科高年级本科生和低年级研究生的基础知识为立足点,以面向工程应用为目标,是一本综合性的机器学习教程。 《机器学习导论/高等学校电子信息类专业系列教材》既反映机器学习的基础知识和经典方法,又重视深度学习和强化学习的知识内容,使读者不仅能在机器学习领域打下坚实的基础,同时也可以利用所学知识解决遇到的实际问题并进入学科前沿。
目录
第1章机器学习概述
1.1什么是机器学习
1.2机器学习的分类
1.2.1基本分类
1.2.2监督学习及其功能分类
1.3构建机器学习系统
1.3.1机器学习的基本元素
1.3.2机器学习的一些基本概念
1.3.3机器学习模型的性能评估
1.4通过简单示例理解机器学习
1.4.1一个简单的回归示例
1.4.2一个简单的分类示例
1.5训练、验证与测试
1.6深度学习简介
1.7本章小结
习题
第2章统计与优化基础
2.1概率基础
2.1.1离散随机变量
2.1.2连续随机变量
2.1.3随机变量的基本特征
2.1.4随机特征的蒙特卡洛逼近
2.2概率实例
2.2.1离散随机变量示例
2.2.2高斯分布
2.2.3指数族
2.2.4混合高斯过程
2.2.5马尔可夫过程
2.3*大似然估计
2.4贝叶斯估计——*大后验估计
2.5随机变量的熵特征
2.5.1熵的定义和基本性质
2.5.2KL散度、互信息和负熵
2.6非参数方法
2.7优化技术概述
2.7.1基本优化算法
2.7.2拉格朗日方法
2.8本章小结
习题
第3章贝叶斯决策
3.1机器学习中的决策
3.2分类的决策
3.2.1加权错误率准则
3.2.2拒绝判决
3.3回归的决策
3.4高斯情况下的分类决策
3.4.1相同协方差矩阵情况的二分类
3.4.2不同协方差矩阵情况的二分类
3.4.3多分类情况
3.5KNN方法
*3.6概率图模型概述
3.6.1贝叶斯网络
3.6.2无向图模型
3.6.3图模型的学习与推断
3.7本章小结
习题
第4章基本回归算法
4.1线性回归
4.1.1基本线性回归
4.1.2线性回归的递推学习
4.1.3正则化线性回归
4.1.4多输出线性回归
*4.2稀疏线性回归Lasso
4.2.1Lasso的循环坐标下降算法
4.2.2Lasso的LAR算法
4.3线性基函数回归
*4.4奇异值分解
4.5回归学习的误差分解
4.6本章小结
习题
第5章基本分类学习
5.1基本分类问题
5.2线性判别函数模型
5.2.1Fisher线性判别分析
*5.2.2感知机
5.3逻辑回归
5.3.1二分类问题的逻辑回归
5.3.2多分类问题的逻辑回归
5.4朴素贝叶斯方法
*5.5机器学习理论简介
5.5.1假设空间有限时的泛化误差界
5.5.2假设空间无限时的泛化误差界
5.6本章小结
习题
第6章支持向量机与核函数方法
6.1线性支持向量机
6.1.1不等式约束的优化
6.1.2线性可分情况的SVM
6.1.3不可分情况的SVM
6.1.4合页损失函数
6.1.5SVM用于多分类问题
6.2非线性支持向量机
6.2.1SVM分类算法小结
*6.2.2SMO算法
6.3支持向量回归
*6.4核函数方法
6.5本章小结
习题
第7章决策树
7.1基本决策树算法
7.1.1决策树的基本结构
7.1.2信息增益和ID3算法
7.1.3信息增益率和C4.5算法
7.2CART算法
7.2.1分类树
7.2.2回归树
7.3决策树的一些实际问题
7.3.1连续数值变量
7.3.2正则化和剪枝技术
7.3.3缺失属性的训练样本问题
7.4本章小结
习题
第8章集成学习
8.1Bagging和随机森林
8.1.1自助采样和Bagging算法
8.1.2随机森林算法
8.2提升和AdaBoost算法
8.2.1AdaBoost算法介绍
*8.2.2AdaBoost算法分析
8.3提升树算法
8.3.1加法模型和提升树
8.3.2梯度提升树
8.4本章小结
习题
第9章神经网络与深度学习之一: 基础
9.1神经网络的基本结构
9.1.1神经元结构
9.1.2多层神经网络解决异或问题
9.1.3多层感知机
9.1.4神经网络的逼近定理
9.2神经网络的目标函数和优化
9.2.1神经网络的目标函数
9.2.2神经网络的优化
9.3误差反向传播算法
9.3.1反向传播算法的推导
9.3.2反向传播算法的向量形式
9.3.3反向传播算法的扩展
9.4神经网络学习中的一些问题
9.4.1初始化
9.4.2正则化
9.4.3几类等价正则化技术
9.5本章小结
习题
第10章神经网络与深度学习之二: 结构
10.1卷积神经网络
10.1.1卷积运算及其物理意义
10.1.2基本CNN的结构
10.1.3CNN的参数学习
*10.1.4卷积的一些扩展结构
*10.1.5CNN示例介绍
10.2循环神经网络
10.2.1基本RNN
10.2.2RNN的计算和训练
*10.2.3长短期记忆模型
*10.2.4门控循环单元
10.3本章小结
习题
第11章神经网络与深度学习之三: 技术和应用
11.1深度学习中的优化算法
11.1.1小批量SGD算法
11.1.2动量SGD算法
11.1.3自适应学习率算法
11.2深度学习训练的正则化技术
11.2.1Dropout技术
11.2.2批归一化
*11.2.3层归一化
*11.3对抗训练
*11.4自编码器
11.4.1自编码器的基本结构
11.4.2自编码器的一些扩展
*11.5生成对抗网络
*11.6注意力机制和Transformer
11.6.1注意力机制
11.6.2序列到序列模型
11.6.3Transformer
11.7本章小结
第12章聚类和EM算法
12.1聚类算法
12.1.1K均值聚类算法
12.1.2DBSCAN聚类算法
12.1.3其他度量和聚类算法
12.2EM算法
12.2.1EM算法的隐变量形式
12.2.2独立同分布情况
*12.2.3EM算法扩展到MAP估计
*12.2.4通过KL散度对EM算法的解释
12.3基于EM算法的高斯混合模型参数估计
12.3.1GMM参数估计
12.3.2GMM的软聚类
12.4本章小结
习题
第13章降维和连续隐变量学习
13.1主分量分析
13.1.1主分量分析原理
13.1.2广义Hebb算法
*13.2样本向量的白化和正交化
13.2.1样本向量的白化
13.2.2向量集的正交化
*13.3独立分量分析
13.3.1独立分量分析的原理和目标函数
13.3.2不动点算法FastICA
13.3.3自然梯度算法
13.3.4仿真实验举例
13.4本章小结
习题
第14章强化学习之一: 经典方法
14.1强化学习的基本问题
14.2马尔可夫决策过程
14.2.1MDP的定义
14.2.2贝尔曼方程
14.2.3*优策略
14.2.4强化学习的类型
14.2.5探索与利用
14.3动态规划
14.3.1策略迭代方法
14.3.2值函数迭代方法
14.4强化学习的蒙特卡洛方法
14.4.1MC部分策略评估
14.4.2MC策略改进
14.4.3在轨策略和离轨策略
14.5强化学习的时序差分方法
14.5.1基本时序差分学习和Sarsa算法
14.5.2离轨策略和Q学习
14.5.3DP、MC和TD算法的简单比较
*14.5.4多步时序差分学习和资格迹算法
*14.6多臂赌博机
14.7本章小结
习题
第15章强化学习之二: 深度强化学习
15.1强化学习的值函数逼近
15.1.1基本线性值函数逼近
*15.1.2线性值函数逼近的*小二乘策略迭代算法
15.1.3深度Q网络
15.2策略梯度方法
15.2.1MC策略梯度算法Reinforce
15.2.2行动器评判器方法
*15.3连续动作确定性策略梯度方法
15.3.1DPG算法
15.3.2DDPG算法
15.3.3连续动作DRL的一些进展概述
15.4本章小结
习题
附录A课程的实践型作业实例
A.1第1次实践作业
A.2第2次实践作业
A.3第3次实践作业
附录B函数对向量和矩阵的求导
术语表
参考文献
作者简介
张旭东,清华大学电子工程系长聘教授,博士生导师,主要研究方向为信号处理和机器学习。先后承担国家、省部级和国际合作项目数十项,在IEEE、IET、ACM等重要刊物和NIPS、AAAI、ICASSP、SIGIR等重要会议上发表学术论文150余篇,出版著作5部。获得Elsevier的引用奖(The Most Cited Paper Award)和IET国际雷达年会论文奖,两次获得清华大学教学成果一等奖,3次获得清华大学优秀教材奖。
-
当代中国政府与政治(新编21世纪公共管理系列教材)
¥33.6¥48.0 -
落洼物语
¥8.7¥28.0 -
中国当代文学名篇选读
¥19.1¥53.0 -
中医基础理论
¥50.7¥59.0 -
北大人文课(平装)
¥13.9¥45.0 -
宪法-第二版
¥12.2¥29.0 -
当代中国政府与政治 第二版
¥57.8¥68.0 -
EPLAN电气设计
¥29.9¥39.8 -
闯进数学世界――探秘历史名题
¥21.3¥32.8 -
企业法务教程
¥34.8¥49.0 -
习近平新时代中国特色社会主义思想概论
¥18.2¥26.0 -
金融学
¥29.9¥49.0 -
计算机操作系统教程(第4版)(清华大学计算机系列教材)
¥31.9¥49.0 -
三国史
¥27.5¥50.0 -
陶瓷坯釉料制备技术/高职高专材料工程技术专业
¥37.4¥45.0 -
陶瓷工艺技术
¥41.7¥49.0 -
飞机总体设计
¥46.8¥78.0 -
陶瓷工艺学/焦宝祥
¥41.7¥49.0 -
古代汉语(第四册)
¥16.1¥35.0 -
编辑审稿实务教程
¥35.1¥45.0