- ISBN:9787519869724
- 装帧:一般铜版纸
- 册数:暂无
- 重量:暂无
- 开本:16开
- 页数:580
- 出版时间:2023-03-01
- 条形码:9787519869724 ; 978-7-5198-6972-4
本书特色
Linux学习的必读经典书籍,Linux用户及系统与网络管理员的实用技巧。 编辑推荐这本实用手册向初中级Linux用户介绍了通过图形及命令行工具管理Linux系统的重要技巧。无论你的Linux系统是嵌入式、桌面版、服务器、云服务,还是虚拟环境,其基础知识都是相同的。本书介绍了大量示例,可帮助你快速入门并运行Linux。 本书针对各种具体问题,提出解决方案,并详细解释了涉及到的技术原理,*后还给出了参考资料以供深入学习。 专家推荐“Linux学习的必读经典书籍。作者深入简出地介绍了Linux操作系统的各个方面。”—— Jack Wallen,屡获殊荣的科技作家,TechRepublic、The New Stack等网站撰稿人“高效工程师不仅了解工具,还知道如何高效地使用工具。本书介绍的Linux工具让人叹为观止。”—— Jonathan Johnson,Dijure独立软件顾问与培训师 实战导向:以企业应用为主线的知识脉络,以实际工作为导向,做到学习的有的放矢,变被动学习为主动求知 图文解析:轻松讲解晦涩理论,将复杂的问题简单化,把抽象的问题具体化 系统全面:涵盖了作为合格的Linux运维工程师必学必会的知识点和实验项目,帮助广大读者跨过技术的**道门槛,快速融入Linux的世界
内容简介
本书针对各种具体问题,提出解决方案,并详细解释了涉及到的技术原理,*z后还给出了参考资料以供深入学习。本书的主要内容有:学习使用全新的通用服务管理器systemd。利用firewalld构建简单或复杂的防火墙。保证Linux系统与移动设备间网络连接的安全。抢救无法引导的系统。重置Linux与Windows的用户密码。利用dnsmasq管理局域网名称服务。管理用户与组,控制文件的访问。探测计算机硬件,监控硬件健康。管理GRUB引导加载程序,设置Linux与Windows双启动。通过*z新的工具同步网络上所有系统的时间。在树莓派上构建互联网路由器与防火墙。管理文件系统与分区。
目录
目录
前言 .1
第1 章 强化学习概述 .13
1.1 为什么现在就需要强化学习? . 14
1.2 机器学习 15
1.3 强化学习 17
1.3.1 什么时候使用强化学习 19
1.3.2 强化学习的应用场景 20
1.4 强化学习的种类 22
1.4.1 免模型学习或有模型学习 . 22
1.4.2 智能体如何使用并更新它们的策略 23
1.4.3 离散或连续的行为 . 25
1.4.4 优化方法. 25
1.4.5 策略评估和改进 . 26
1.5 强化学习的基本概念 . 27
1.5.1 历史上**个强化学习算法 . 28
1.5.2 强化学习和机器学习是一种东西吗? . 31
1.5.3 奖励和反馈 32
1.6 强化学习的发展简史 . 35
1.7 本章总结 37
1.8 扩展阅读 38
1.9 参考文献 38
第2 章 马尔可夫决策过程,动态规划,蒙特卡洛方法 44
2.1 多臂老虎机测试 44
2.1.1 奖励工程. 45
2.1.2 策略评估:价值函数 45
2.1.3 策略改进:选择*佳动作 48
2.1.4 模拟环境. 50
2.1.5 运行实验. 50
2.1.6 ε - 贪婪算法的改进. 52
2.2 马尔可夫决策过程 . 54
2.2.1 库存控制. 56
2.2.2 库存控制仿真 . 60
2.3 策略与价值函数 62
2.3.1 打折的奖励 62
2.3.2 用状态– 价值函数预测奖励 64
2.3.3 用动作值函数预测奖励 . 67
2.3.4 *优策略. 69
2.4 蒙特卡洛策略生成 70
2.5 动态规划的值迭代 72
2.5.1 值迭代的过程 74
2.5.2 数值迭代结果 76
2.6 总结 78
2.7 扩展阅读 79
2.8 参考文献 79
第3 章 时序差分学习,Q 学习和n 步算法 80
3.1 时序差分学习的相关公式 81
3.1.1 Q 学习 . 83
3.1.2 SARSA 85
3.1.3 Q 学习与SARSA 方法的对比 . 87
3.1.4 案例解析:自动扩展应用程序容器以降低成本 . 90
3.2 行业实例:广告中的实时竞价 . 92
3.2.1 MDP 的定义 . 92
3.2.2 实时竞价案例的环境 93
3.2.3 进一步改进 94
3.3 Q 学习的相关扩展 96
3.3.1 双重Q 学习 96
3.3.2 延迟Q 学习 97
3.3.3 各类版本的Q 学习之间的对比 98
3.3.4 对抗学习. 98
3.4 n 步算法 99
3.5 有效跟踪 104
3.6 有效跟踪算法的扩展 107
3.6.1 沃特金斯的Q(λ) 107
3.6.2 沃特金斯Q(λ) 的模糊擦除 . 108
3.6.3 快速Q 学习 108
3.6.4 积累式有效跟踪与取代式有效跟踪 108
3.7 总结 . 109
3.8 扩展阅读 110
3.9 参考文献 110
第4 章 深度Q 网络 . 112
4.1 深度学习的体系结构 113
4.1.1 基础知识 113
4.1.2 深度学习架构 114
4.1.3 深度学习库 . 115
4.1.4 深度强化学习 117
4.2 深度Q 学习 . 117
4.2.1 经验重放 118
4.2.2 克隆Q 网络 118
4.2.3 神经网络结构 119
4.2.4 DQN 的实现 119
4.2.5 实际案例:倒立摆环境中的DQN 120
4.2.6 案例研究:减少建筑物的能源使用 125
4.3 彩虹DQN 126
4.3.1 分配强化学习 126
4.3.2 优先经验重放 129
4.3.3 噪声网络 129
4.3.4 决斗网络 129
4.4 实际案例:雅达利的彩虹DQN 130
4.4.1 结果 131
4.4.2 讨论 132
4.5 其他DQN 改进 134
4.5.1 改进探索过程 135
4.5.2 改进奖励过程 136
4.5.3 从离线数据中进行学习 137
4.6 总结 . 139
4.7 扩展阅读 140
4.8 参考文献 140
第5 章 梯度策略 144
5.1 直接学习策略的优势 144
5.2 如何计算策略的梯度 145
5.3 策略梯度理论 . 146
5.4 策略函数 149
5.4 1 线性策略 149
5.4.2 其他策略 151
5.5 基本实现 152
5.5.1 蒙特卡洛算法(强化算法) 152
5.5.2 带基线的强化算法 153
5.5.3 梯度方差的减小 157
5.5.4 n 步演员评论家和优势演员评论家(A2C) . 159
5.5.5 基于资格迹的演员评论家算法 . 164
5.5.6 基本策略梯度算法的比较 165
5.6 行业研究:为客户自动提供产品 . 166
5.6.1 行业实例:Gym 环境中的购物车实验 . 167
5.6.2 预设期望 168
5.6.3 购物车实验环境的结果展示 169
5.7 总结 . 173
5.8 扩展阅读 174
5.9 参考文献 174
第6 章 超越策略梯度 176
6.1 离线算法 177
6.1.1 重要性抽样 177
6.1.2 行为和目标策略 179
6.1.3 离线 Q 学习 180
6.1.4 梯度时差学习 180
6.1.5 Greedy-GQ 算法 181
6.1.6 离线演员评论家算法 . 182
6.2 决定性策略梯度 183
6.2.1 决定性策略梯度 183
6.2.2 深度确定性策略梯度 . 185
6.2.3 双延迟DDPG 189
6.2.4 案例研究:利用到用户评论的推荐算法 193
6.2.5 改进DPG. 194
6.3 信赖域方法 195
6.3.1 Kullback-Leibler 散度 197
6.3.2 自然策略梯度与信任区域策略优化 198
6.3.3 近端策略优化 201
6.4 实际案例:在现实生活中使用伺服器 206
6.4.1 实验设置 . 206
6.4.2 强化学习算法实现 207
6.4.3 增加算法的复杂度 210
6.4.4 模拟中的超参数调优 . 211
6.4.5 产生的策略 212
6.5 其他策略梯度算法 214
6.5.1 回溯(λ) 214
6.5.2 有经验重放的演员评论家(ACER) 214
6.5.3 使用Kronecker 因子信任区域的演员评论家算法(ACKTR) 215
6.5.4 更多相关方法 216
6.6 策略梯度算法的扩展 216
6.7 总结 . 217
6.7.1 应该使用哪种算法? . 217
6.7.2 关于异步方法的注意事项 218
6.8 扩展阅读 218
6.9 参考文献 219
第7 章 用熵方法学习所有可能的策略 225
7.1 什么是熵? 225
7.2 *大熵强化学习 226
7.3 弱演员评论家算法 227
7.3.1 SAC 的实现细节与离散动作空间 228
7.3.2 自动调整温度 229
7.3.3 案例研究:有助于减少交通拥堵的自动化交通管理系统 229
7.4 *大熵方法的推广 231
7.4.1 熵的其他度量(以及策略集) . 231
7.4.2 基于双重Q 学习上限的优化探索 231
7.4.3 通过历史经验重放改进结果 232
7.4.4 软策略梯度 . 232
7.4.5 软Q 学习(及其扩展) 232
7.4.6 路径一致性学习 233
7.5 性能比较:SAC 与PPO 233
7.6 熵是如何激励智能体进行探索的? . 235
7.7 行业实例:通过遥控车学习自动驾驶 240
7.7.1 问题描述 241
7.7.2 减少训练时间 241
7.7.3 夸张的动作 . 244
7.7.4 超参数探索 . 246
7.7.5 *终策略 246
7.7.6 进一步改进 . 247
7.8 本章总结 248
7.8.1 策略梯度与软Q 学习的等价性 249
7.8.2 这对今后的发展意味着什么? . 249
7.8.3 这对目前来说意味着什么? 249
7.9 参考文献 250
第8 章 改进智能体的学习方式 253
8.1 关于MDP 的思考 . 254
8.1.1 部分可观察马尔可夫决策过程 . 254
8.1.2 案例研究:POMDP 在自动驾驶汽车中的应用 256
8.1.3 上下文马尔可夫决策过程 . 257
8.1.4 动作不断变化的MDPs 257
8.1.5 正则化MDP 258
8.2 层次强化学习 . 259
8.2.1 初级层次强化学习 . 259
8.2.2 具有内在奖励的层次强化学习(HIRO) 260
8.2.3 学习技巧和无监督学习 262
8.2.4 在HRL 中使用技能 263
8.2.5 HRL 研究结论 264
8.3 多智能体强化学习 265
8.3.1 MARL 的框架 265
8.3.2 集中式或分布式 267
8.3.3 单智能体算法 268
8.3.4 案例研究:单智能体分散学习在无人机中的应用 . 269
8.3.5 集中学习,分散执行 . 270
8.3.6 分散的学习 . 272
8.3.7 其他的组合 . 273
8.3.8 MARL 的挑战 274
8.3.9 MARL 的结论 275
8.4 专家的指导 276
8.4.1 克隆行为 276
8.4.2 模拟强化学习 276
8.4.3 反向强化学习 277
8.4.4 课程学习 279
8.5 其他案例 281
8.5.1 元学习 281
8.5.2 迁移学习 281
8.6 总结 . 282
8.7 扩展阅读 283
8.8 参考文献 285
第9 章 强化学习实践 293
9.1 强化学习的生命周期 293
9.2 问题定义:一个真正的强化学习项目到底包括什么? . 299
9.2.1 强化学习问题是连续性问题 299
9.2.2 强化学习问题是战略性问题 300
9.2.3 强化学习中的基础指标 302
9.2.4 学习类型 304
9.3 强化学习工程和改进 309
9.3.1 项目过程 309
9.3.2 环境工程 310
9.3.3 状态工程或状态表示学习 313
9.3.4 策略工程 316
9.3.5 将策略映射到操作空间 322
9.3.6 探索 326
9.3.7 奖励工程 333
9.4 总结 . 337
9.5 扩展阅读 338
9.6 参考文献 339
第10 章 强化学习的生产部署 348
10.1 实现阶段 . 349
10.1.1 框架 . 349
10.1.2 大规模强化学习 353
10.1.3 评价 . 361
10.2 部署 370
10.2.1 目标 . 371
10.2.2 体系架构 374
10.2.3 辅助工具 376
10.2.4 安全、保障和道德 382
10.3 总结 389
10.4 扩展阅读 . 390
10.5 参考文献 . 392
第11 章 结论与展望 . 400
11.1 提示和技巧 400
11.1.1 框架问题 400
11.1.2 你的数据 402
11.1.3 训练 . 403
11.1.4 评价 . 404
11.1.5 部署 . 404
11.2 调试 405
11.2.1 ${ALGORITHM_NAME} 不能解决${ENVIRONMENT}! 406
11.2.2 监测调试 407
11.3 强化学习的未来 408
11.3.1 强化学习市场机会 409
11.3.2 强化学习的研究方向 410
11.4 结束语 416
11.4.1 未来下一步 417
11.4.2 现在轮到你了! . 418
11.5 扩展阅读 . 418
11.6 参考文献 . 419
附录A 两种动作的Logistic 策略梯度 423
附录B Softmax 的策略梯度 . 427
作者简介
Carla Schroder是一名科技记者与作家,拥有系统与网络管理员的经验,曾负责管理Linux-微软-苹果混合网络。她撰写过1000多篇Linux操作指南,目前就职于一家Linux企业软件公司,负责编写和维护产品手册。出版的书籍有《Linux Networking Cookbook》《The Book of Audacity》等。
-
硅谷之火-人与计算机的未来
¥14.3¥39.8 -
全图解零基础word excel ppt 应用教程
¥12.0¥48.0 -
有限与无限的游戏:一个哲学家眼中的竞技世界
¥37.4¥68.0 -
机器学习
¥59.4¥108.0 -
深度学习的数学
¥43.5¥69.0 -
智能硬件项目教程:基于ARDUINO(第2版)
¥31.9¥65.0 -
元启发式算法与背包问题研究
¥38.2¥49.0 -
LINUX企业运维实战(REDIS+ZABBIX+NGINX+PROMETHEUS+GRAFANA+LNMP)
¥51.8¥69.0 -
AI虚拟数字人:商业模式+形象创建+视频直播+案例应用
¥62.9¥89.8 -
LINUX实战——从入门到精通
¥48.3¥69.0 -
UNIX环境高级编程(第3版)
¥164.9¥229.0 -
剪映AI
¥52.8¥88.0 -
深度学习高手笔记 卷2:经典应用
¥90.9¥129.8 -
纹样之美:中国传统经典纹样速查手册
¥77.4¥109.0 -
UG NX 12.0数控编程
¥24.8¥45.0 -
MATLAB计算机视觉与深度学习实战(第2版)
¥90.9¥128.0 -
UN NX 12.0多轴数控编程案例教程
¥25.8¥38.0 -
微机组装与系统维护技术教程(第二版)
¥37.8¥43.0 -
Go 语言运维开发 : Kubernetes 项目实战
¥48.2¥79.0 -
明解C语言:实践篇
¥62.9¥89.8