- ISBN:9787302482369
- 装帧:一般铜版纸
- 册数:暂无
- 重量:暂无
- 开本:其他
- 页数:150
- 出版时间:2017-02-01
- 条形码:9787302482369 ; 978-7-302-48236-9
本书特色
全书使用统一的论述框架(形式化的安全定义、严格的安全证明)来介绍十进制密码系统的构造过程,这是现代密码学研究中经常使用的方法,它能使得初学者受到良好的科学训练,形成严谨的科学素养。该书的另一个特点是逻辑上层层递进,系统的阐述基于负超几何分布构建密码系统的各个方面,书中从负超几何分布的近似讲起,接着介绍负超几何随机变量的抽样算法,*后论述如何基于负超几何随机变量抽样算法构造伪随机置换、短分组加密和保序加密。这便于读者由浅入深的体会密码学的奥秘,也非常具有启发性,对读者使用其他的概率分布来构造新型密码方案具有一定的启发作用。 系统阐述如何利用概率分布构造密码方案的书籍
内容简介
本书系统地研究了基于负超几何分布的十进制分组加密方案,重点阐述如何基于负超几何随机变量的抽样算法构造十进制的分组密码。全书共6章: 章讨论十进制分组密码研究的发展历程,分析各个时期十进制密码系统的特点; 第2章介绍负超几何概率分布的三种近似,分别讨论三种近似的近似精度和适用范围; 第3章介绍负超几何随机变量的两种抽样算法,包括高效抽样算法和准确抽样算法,分析抽样算法的效率并证明抽样算法的正确性; 第4章介绍如何利用负超几何随机变量的高效抽样算法在小型整数集合上构造可证明安全的伪随机置换和十进制短分组密码,并严格证明安全等级; 第5章介绍基于用负超几何随机变量的准确抽样算法构造十进制保序加密方案的过程,证明密码方案的安全等级并分析方案执行效率; 第6章展望未来研究方向。 本书适合高等院校信息安全相关专业的高年级本科生或研究生阅读,也可作为信息安全专业工程技术人员的参考用书
目录
目录
第1章绪论
1.1分组密码
1.2十进制分组加密的研究意义
1.3十进制分组加密的研究概论
1.3.1十进制短分组加密
1.3.2十进制保序加密
1.4本书研究内容
第2章负超几何分布的三种近似
2.1基本定义
2.1.1离散型随机变量
2.1.2几何分布
2.1.3负二项式分布
2.1.4负超几何分布
2.1.5指数分布
2.1.6伽马分布
2.2负超几何概率的一种改进的负二项近似
2.3负超几何概率的一种高精度负二项近似
2.4有限个独立的负超几何随机变量之和的
一种伽马近似
2.5本章小结
第3章负超几何随机变量的两种抽样算法
3.1负超几何随机变量的一种高效抽样算法
3.1.1乘抽样法
3.1.2算法构造和分析
3.2负超几何随机变量的一种精确抽样算法
3.2.1舍选抽样法
3.2.2c值的计算
3.2.3算法构造
3.2.4正确性证明
3.3本章小结
第4章基于负超几何分布的十进制短分组加密方案
NHGSBC
4.1基本定义
4.2十进制分组上的随机置换
4.2.1置换技术
4.2.2Separator算法
4.2.3UnSeparator 算法
4.2.4Permutation 算法
4.2.5UnPermutation算法
4.2.6正确性证明
4.3十进制短分组加密方案NHGSBC
4.3.1新方案构造
4.3.2性能分析
4.3.3安全性证明
4.4本章小结
第5章基于负超几何分布的十进制保序加密方案
NHGOPES
5.1基本定义
5.2新方案构造
5.3安全性证明和性能分析
5.4本章小结
第6章总结与展望
6.1主要研究工作总结
6.2未来的研究方向
6.2.1对十进制分组加密方案攻击方法
的研究
6.2.2非均匀分布明文空间上保序加密
方案的研究
6.2.3云存储中支持模糊查询的可搜索
对称加密研究
参考文献
附录A基本符号
节选
第3章负超几何随机变量的两种抽样算法 在数理统计中,常把被考察对象的某一个(或多个)指标的全体称为总体。人们总是把总体看成一个具有分布的随机变量,总体中的每一个单元称为个体。把从总体中抽取的部分个体x1,x2,…,xn称为样本。随机变量有若干可能的取值,每个可能的取值有一定的可能性,根据随机变量遵循的规律使用一种方法获得它的具体值,叫做抽样。随机变量的抽样方法有多种,不同的分布采用的抽样方法不尽相同,但各种分布的随机抽样方法都是以服从[0,1]均匀分布的随机变量的抽样为基础产生的。 离散型随机变量的直接抽样是将随机数和阶梯型的随机变量的分布值逐项比较而确定相应的随机事件[66]。为了得到所需要的随机事件,直接抽样法所需要的比较次数也形成了另外一个随机变量,而且这个随机变量的数学期望和原随机变量的数学期望是一致的。这就形成了两个问题: 不确定的比较次数提高了抽样算法实现的复杂度。从抽样过程可以看出,离散型随机变量的直接抽样是一个“理想”的抽样方法,只能对分布律简单的随机变量有效。负超几何分布律中含有组合、阶乘运算,参数个数多,分布律函数复杂,所以用直接抽样法来生成负超几何随机变量不可行[67],需要借助其他的分布,使用间接抽样法来生成。 本章利用乘抽样法,基于本书2.2节推导的改进的负二项近似,构造一种高效的负超几何随机变量抽样算法,分析抽样算法的效率,得到抽样效率为1.25,即平均生成1.25个[0,1]上均匀分布的样本,得到一个负超几何分布的样本。 此外,利用舍选抽样法,基于本书2.4节推导的伽马近似,构造了负超几何随机变量的一种精确抽样算法,严格证明抽样算法的正确性。 3.1负超几何随机变量的一种高效抽样算法 本章中,f,g,h表示概率分布,f(x)表示分布律或概率密度函数,χ表示集合,X,ξ表示随机变量,x表示随机变量在某一时刻的取值(即随机值),E表示抽样算法的效率,U(0,1)表示区间[0,1]上的均匀分布。 3.1.1乘抽样法 乘抽样法(Multiply Method)的基本思想是将一个复杂分布的抽样,转换成一个已知的、简单分布的抽样,它能克服直接抽样法实现困难的缺点,适用于较复杂的概率分布。抽样思想是通过一个容易生成的概率分布f1和一个取舍准则生成另一个与f1相近的概率分布f,具体来说分布f和f1同为集合χ上的分布且满足f(x)=f1(x)·h(x),其中f1(x)的抽样方法已知,h(x)是x的非负函数且上确界为a,则可以通过对分布f1的样本使用某种机制舍弃其中的一些样本个体,保留剩下的样本,使得其服从分布f。具体步骤如下[68]: (1) 生成f1的样本X; (2) 生成ζ~U(0,1),如果ζ≤h(X)/a,输出X; 否则转步骤(1); (3) 如能以任意精度计算ζ和ζ≤h(X)/a的值, 那么以上输出的X服从f分布,抽样效率E=1/a。 使用乘抽样法时,应注意如下两点: (1) 为了提高乘抽样法的效率,a的值应该尽可能得小,也就是使分布f1和f分布更为相近,通常情况下选择f分布的近似分布作为f1; (2) f1的高效抽样算法已知。 3.1.2算法构造和分析 本节首先找与负超几何分布相关的f1(x)和h(x),然后计算h(x)的*大值。在第2章中,推导了负超几何的一种改进的负二项近似,它由负二项分布NBD(r,p)乘以一个修正因子得到。使用乘抽样法生成服从负超几何分布的随机变量,把NBD(r,p)当作f1(x),把修正因子当作h(x),即有 f1(x)=NBD(r,p)(3.1) h(x)=1+x(x-1)2N- 12Npq(x-r)(x-r-1)p+r(r-1)q (3.2) 接下来求函数h(x)的上确界。 定理3.1令h(x)=1+x(x-1)2N-12Npq[(x-r)(x-r-1)p+r(r-1)q],当x取不小于rp+1的*小正整数时,函数h(x)取得*大值1.25,其中r≥1,x≥r,q=1-p。 证明: 由于 h(x)-h(x-1) =x(x-1)2N-(x-r)(x-r-1)p2Npq-(x-1)(x-2)2N+ (x-r-1)(x-r-2)p2Npq =x(x-1)-(x-1)(x-2)2N+ (x-r-1)(x-r-2)p-(x-r)(x-r-1)p2Npq =2(x-1)2N-2(x-r-1)2Nq =x-1N-x-r-1Nq≥0 以及 h(x+1)-h(x)=xN-x-rNq≤0 得到x≤rp+1及x≥rp, 而rp+1-rp=1, x是正整数,可知当x取不小于rp+1的*小正整数时,h(x)取得*大值。特别的,当rp为整数时,h(x)在rp和rp+1处同时取得*大值,其中r≥1,x≥r,q=1-p。且有 h(x)≤1+rp+1rp2N-rp+1-rrp+1-r-1p+r(r-1)q2Npq =1+rp+1q-rp+1-r(1-p)-(r-1)q4q =1+rp+1-rp+1-r-(r-1)4 =1+rp+1-rp-1+r-r+14 =1.25(3.3) 得证。 图3.1给出了负超几何随机变量乘抽样算法NHGMultiplySample的伪代码。 NHGMultiplySample (N,M,cc) 输入: N,M是整数 输出: x是整数 1. a=1.25, p=MN, q=1-p, r=M2 2. x←NB(r,p,cc) 3. ξ←U(0,1) 4. 假如 xN-M+r,转步骤2 5. H←1+x(x-1)2N-(x-r)(x-r-1)2Nq+r(r-1)2Np 6. 假如 ξ≤H/a,返回x 7. 转步骤2 图3.1NHGMultiplySample算法 利用NHGMultiplySample算法生成了100个负超几何随机值,如图3.2所示,其中N=1000,M=0.4,r=200。 498491498468494494488456528485505473495478 505501493497464486511506500486504499494489 494509522507504480492478506495517524503479 478505491498494512497501508505511501480524 498472520501475496464511507524504494489494 510467488477498489520501506521464500424436 507528533541552571436400399498501569577590 421400 图3.2NHGMultiplySample生成的100个随机数 表3.1给出了利用NHGMultiplySample算法分别生成10000个、1000个和100个随机变量时,时间和内存的消耗。算法在华硕星锐4752G上运行,2.9 GHZ Pentium(R) PC,C 编译器,算法使用的是文献[67]中构造的的抽样算法生成负二项随机变量,利用The GNU MP Bignum Library(GMP)库进行任意精度计算,其中N=1000,M=0.5,r=250。 表3.1N=1000,M=0.5,r=250时NHGMultiplySample算法的执行效率 100个随机值 1000个随机值 10000个随机值 时间耗费(s) 0.067934 0.395207 6.126978 内存耗费362 words 3.2负超几何随机变量的一种精确抽样算法 舍选法(AcceptanceRejection Method)是冯·诺依曼为克服直接抽样法的缺点而提出来的随机变量抽样法,它适用于概率密度函数复杂的分布。目前,负超几何概率的分布函数以及分布函数的反函数都未知,要对它的随机变量进行精确抽样,采用直接抽样法显然不行,必须采用间接抽样法。舍选法就是这样一种间接抽样法,它的抽样思想是为了实现从已知概率密度函数f(x)抽样,选取与f(x)取值范围相同的概率密度函数g(x),生成服从g(x)的随机数序列{ζi},i=1,2,…,n,对{ζi}进行舍选,舍选的原则是在g(x)值大的地方,保留更多的随机数ζi; 在g(x)值小的地方,保留较少的随机数ζi,使得得到的子样中ζi的分布满足密度函数f(x)。一般来说,选择f的近似分布作为g分布。 因此利用舍选法对负超几何分布进行抽样,必须要找到与其相近的连续型分布,本书2.4节中提出的伽马分布就是符合要求的一种分布。 下面先描述舍选法的操作过程,然后详细介绍负超几何分布的一种高效抽样算法[70],*后分析抽样算法的抽样效率并证明算法的正确性。 3.2.1舍选抽样法 假设f(x)和g(x)均为集合χ上的概率密度函数,且满足f(x)g(x)≤c,c≥0。x∈χ,舍选法的具体步骤如下[71]: (1) 生成g的样本X; (2) 生成ζ~U(0,1),且ζ和X独立; (3) 如果ζ≤f(X)/c·g(X),则输出X(表示“接受”); 否则转步骤(1)(表示“舍弃”)。 使用舍选抽样法时,应注意如下两点: (1) f(X)和g(X)是互相独立的,因此f(X)/c·g(X)是和步骤(2)中的ζ是相互独立的; (2) f(X)/c·g(X)的值在0到1之间,即0 用T表示“成功抽取一个个体”所需要执行的步骤(1)和(2)的次数,则T服从几何分布,即p=P(ζ≤f(X)/c·g(X)); P(T=n)=(1-p)n-1p,n≥1,那么执行步骤(1)和(2)的平均次数等于T的数学期望,μ(T)=1/p。计算p的值,则 pr=P(ζ≤f(X)/c·g(X)|X=x) =f(x)/c·g(x)(3.4) 由于 pr=∫+∞-∞f(x)c·g(x)·g(x)dx =1c∫+∞-∞f(x)dx =1c(3.5) 所以μ(T)=1pr=c,即成功抽取一个个体所需要执行步骤(2)的次数为c次。显而易见,c值越小,抽样效率越高。为了使c值尽可能得小,选择f的近似分布作为g分布,且c=maxf(x)/g(x)。 3.2.2c值的计算 本章把伽马分布Ga(r,λ)作为超几何分布NHGD(r,N,M)的连续型近似。设计抽样算法时,要用到抽样效率c的值,从抽样过程可知,NHGD(r,N,M)/Ga(r,λ)的*大值是c,但直接求NHGD(r,N,M)/Ga(r,λ)的*大值不可行,此处借用负二项分布NBD(r,p)作为中间工具,先计算: Q1←(NHGD(r,N,M)/NBD(r,p))max(3.6) 式(3.6)表示把NHGD(r,N,M)/NBD(r,p)的值上确界赋值给Q1,接着计算: Q2←(NBD(r,p)/Ga(r,-ln(1-p))max(3.7) 式(3.7)表示把NBD(r,p)/Ga(r,-ln(1-p))的上确界赋值给Q2,*后将 c←Q1·Q2(3.8) 式(3.8)表示把Q1·Q2的值赋给c,通过此法得到值c。 定理3.2设N,M∈N,M≤N,r∈{1,2,…,M},令p=M/N,那么 NHGD(r,N,M)NBD(r,p)
-
铁道之旅:19世纪空间与时间的工业化
¥20.7¥59.0 -
金属材料及热处理
¥46.1¥72.0 -
实用电气计算
¥64.2¥88.0 -
中国传统民俗文化:建筑系列:中国古代桥梁
¥20.9¥58.0 -
嗨印刷工艺(Vol1烫印)(精)
¥147.4¥268.0 -
西门子S7-1200 PLC项目化教程
¥39.4¥54.0 -
变频器维修手册
¥69.3¥99.0 -
装配化工字组合梁设计
¥88.0¥160.0 -
气动系统装调与PLC控制
¥29.1¥39.8 -
高聚物粘结及其性能
¥34.8¥120.0 -
液压控制系统
¥12.7¥31.0 -
汽车风云人物
¥13.5¥50.0 -
品牌鞋靴产品策划-从创意到产品
¥26.5¥42.0 -
城市桥梁工程施工与质量验收手册-(含光盘)
¥61.6¥78.0 -
城镇道路工程施工与质量验收规范实施手册
¥16.4¥39.0 -
航空发动机限寿件概率损伤容限评估概述
¥67.8¥88.0 -
天才武器
¥42.0¥60.0 -
中国再制造进展
¥88.5¥118.0 -
中国烹饪工艺学粤菜教程
¥48.4¥59.8 -
蓝色水星球 重新思考我们在宇宙中的家园
¥60.7¥88.0