×
超值优惠券
¥50
100可用 有效期2天

全场图书通用(淘书团除外)

关闭
智能科学技术著作丛书柔性作业车间调度问题及其智能优化算法(英文版)

智能科学技术著作丛书柔性作业车间调度问题及其智能优化算法(英文版)

1星价 ¥86.4 (7.2折)
2星价¥86.4 定价¥120.0
图文详情
  • ISBN:9787030593672
  • 装帧:一般胶版纸
  • 册数:暂无
  • 重量:暂无
  • 开本:B5
  • 页数:172
  • 出版时间:2018-11-01
  • 条形码:9787030593672 ; 978-7-03-059367-2

本书特色

  《中国制造2025》把绿色智能制造作为重点实施的五大工程之一.柔性作业车间调度问题广泛存在于工业生产中,属于智能制造领域的一类典型调度问题.本书针对单目标、多目标柔性作业车间调度问题,分别建立了混合整数规划模型,研究了问题的先验知识和结构特性,探索禁忌搜索、变邻域搜索、多目标人工蜂群、多目标蛙跳算法、多目标局部搜索等算法求解该类问题的关键理论与技术,提出了一系列具有创新性的优化调度理论,并设计了多种高效的调度方法.本书是作者近年来在多项国家和省部级科研项目资助下取得的一系列研究成果的总结.

内容简介

柔性作业车间调度问题(FlexibleJobShopSchedulingProblem,FJSSP)是作业车间调度中的一种特例,因其增加了机床选择的柔性,使得FJSSSP相比作业车间调度更为复杂,属于强NP-难问题,近年来成为靠前外研究的热点问题。本书研究单目标、多目标、多约束FJSSP问题,首先建立其混合整数规划模型;其次,融合新型的离散智能优化算法,如人工蜂群优化算法、忌搜索算法、和声搜索、粒子群优化等,综合考虑FJSSP问题特征、目标特点和约束条件,利用启发式信息指导智能算法的搜索方向,融合面向具体问题的局部算法来强化集中能力,利用问题解之间的本质联系来提高个体的评价速度和算法的搜索效率,提出了解决多约束、多目标柔性作业车间调度问题的高性能混合优化算法。

目录

Preface Chapter 1 A hybrid tabu search algorithm for FJSP 1.1 Introduction 1.2 Problem description and formulation 1.3 Related algorithm and theory 1.3.1 Tabu search algorithm 1.3.2 Critical path theory 1.4 The hybrid algorithm framework 1.4.1 Coding 1.4.2 Initialization of solutions 1.4.3 Public critical blocks 1.4.4 Neighborhood for machine assignment component 1.4.5 Neighborhood for operation scheduling component 1.4.6 The hybrid algorithm framework 1.5 Experimental results 1.5.1 Experimental setup 1.5.2 Test instances of the Kacem instances 1.5.3 Test instances of the BRdata 1.6 Conclusion References Chapter 2 A hybrid tabu search for multi-objective FJSP 2.1 Introduction 2.2 Problem formulation 2.3 Framework of the hybrid algorithm 2.4 Assignment algorithm: tabu search algorithm 2.4.1 Tabu search algorithm 2.4.2 Encoding 2.4.3 Parameter settings 2.4.4 Local search 2.5 Scheduling algorithm: variable neighborhood search 2.5.1 Left-shift based decoding 2.5.2 Public critical block 2.5.3 Variable neighborhood search 2.6 Experimental results 2.6.1 Results of Kacem instances 2.6.2 Results of BRdata 2.7 Conclusion References Chapter 3 A hybrid VNS algorithm for multi-objective FJSP 3.1 Introduction 3.2 Problem formulation 3.3 Framework of the hybrid algorithm 3.4 Machine assignment algorithm: the genetic algorithm 3.4.1 Genetic algorithm 3.4.2 Encoding 3.4.3 Initialization of machine assignment component 3.4.4 Crossover operation 3.4.5 Mutation operation 3.5 Operation sequencing algorithm: variable neighborhood search algorithm 3.5.1 Initialization of the operation sequencing component 3.5.2 Public critical block theory 3.5.3 Effective neighborhood structure 3.6 Experimental results 3.6.1 Setting parameters 3.6.2 Results of the Kacem instances 3.7 Conclusion References Chapter 4 Pareto-based ABC for multi-objective FJSP 4.1 Introduction 4.2 Problem formulation 4.3 Artificial bee colony algorithm 4.3.1 The basic concept of ABC algorithm 4.3.2 Initialization of the parameters 4.3.3 Initialization of the population 4.3.4 Local search operator 4.3.5 Global search operator 4.3.6 Random search operator 4.4 The hybrid algorithm P-DABC 4.4.1 Food source representation 4.4.2 Local search approaches 4.4.3 Employed bee phase 4.4.4 Crossover operator 4.4.5 Onlooker bee phase 4.4.6 Scout bee phase 4.4.7 Multi-objective optimizer 4.5 Experimental results 4.5.1 Setting parameters 4.5.2 Results comparisons 4.6 Conclusion References Chapter 5 An effective shuffled frog-leaping algorithm for multi-objective FJSP 5.1 Introduction 5.2 Literature review 5.3 Problem formulation 5.4 Shuffled flog-leaping algorithm 5.5 The hybrid algorithm HSFLA 5.5.1 Solution representation 5.5.2 Population initialization 5.5.3 Multi-objective SFLA 5.5.4 The framework of HSFLA 5.6 Experimental results 5.6.1 Setting parameters 5.6.2 Results comparisons 5.6.3 The three Kacem instances 5.6.4 The three Kacem instances with release dates 5.6.5 The BRdata instances 5.7 Conclusion References Chapter 6 A hybrid Pareto-based local search algorithm for multi-objective FJSP 6.1 Introduction 6.2 Problem description 6.3 Related theory 6.3.1 Variable neighbourhood search 6.3.2 Critical path theory 6.4 The hybrid algorithm 6.4.1 Coding 6.4.2 Population initialization 6.4.3 Neighboring approaches 6.4.4 VNS based self-adaptive strategy 6.4.5 Pareto archive set 6.4.6 The framework of PLS 6.5 Experimental results 6.5.1 Setting parameters 6.5.2 Results comparisons 6.6 Conclusion References
展开全部

预估到手价 ×

预估到手价是按参与促销活动、以最优惠的购买方案计算出的价格(不含优惠券部分),仅供参考,未必等同于实际到手价。

确定
快速
导航