×
线性代数(第5版)
读者评分
5分

线性代数(第5版)

1星价 ¥68.0 (6.3折)
2星价¥68.0 定价¥108.0
商品评论(1条)
m28***(三星用户)

一本很好的书

很好的一本书,买来看看没有问题。以后还找这种书来看。中国图书网上,我买到的书都是正版。

2020-06-07 07:58:49
0 0
图文详情
  • ISBN:9787302535560
  • 装帧:一般胶版纸
  • 册数:暂无
  • 重量:暂无
  • 开本:其他
  • 页数:573
  • 出版时间:2018-04-01
  • 条形码:9787302535560 ; 978-7-302-53556-0

本书特色

线性代数内容包括行列式、矩阵、线性方程组与向量、矩阵的特征值与特征向量、二次型及Mathematica 软件的应用等。 每章都配有习题,书后给出了习题答案。本书在编写中力求重点突出、由浅入深、 通俗易懂,努力体现教学的适用性。本书可作为高等院校工科专业的学生的教材,也可作为其他非数学类本科专业学生的教材或教学参考书。

内容简介

线性代数内容包括行列式、矩阵、线性方程组与向量、矩阵的特征值与特征向量、二次型及Mathematica 软件的应用等。 每章都配有习题,书后给出了习题答案。本书在编写中力求重点突出、由浅入深、 通俗易懂,努力体现教学的适用性。本书可作为高等院校工科专业的学生的教材,也可作为其他非数学类本科专业学生的教材或教学参考书。

目录

Table of Contents
1 Introduction to Vectors 1
1.1 VectorsandLinearCombinations...................... 2 1.2 LengthsandDotProducts.......................... 11 1.3 Matrices ................................... 22 2 Solving Linear Equations 31
2.1 VectorsandLinearEquations........................ 31 2.2 TheIdeaofElimination........................... 46 2.3 EliminationUsingMatrices......................... 58 2.4 RulesforMatrixOperations ........................ 70 2.5 InverseMatrices............................... 83 2.6 Elimination = Factorization: A = LU .................. 97 2.7 TransposesandPermutations ........................ 108 3 Vector Spaces and Subspaces 122
3.1 SpacesofVectors .............................. 122 3.2 The Nullspace of A: Solving Ax = 0and Rx =0 ........... 134 3.3 The Complete Solution to Ax = b ..................... 149 3.4 Independence,BasisandDimension .................... 163 3.5 DimensionsoftheFourSubspaces ..................... 180 4 Orthogonality 193
4.1 OrthogonalityoftheFourSubspaces . . . . . . . . . . . . . . . . . . . . 193
4.2 Projections ................................. 205 4.3 LeastSquaresApproximations ....................... 218 4.4 OrthonormalBasesandGram-Schmidt. . . . . . . . . . . . . . . . . . . 232
5 Determinants 246
5.1 ThePropertiesofDeterminants....................... 246 5.2 PermutationsandCofactors......................... 257 5.3 Cramer’sRule,Inverses,andVolumes . . . . . . . . . . . . . . . . . . . 272
vii 6 Eigenvalues and Eigenvectors 287
6.1 IntroductiontoEigenvalues......................... 287 6.2 DiagonalizingaMatrix ........................... 303 6.3 SystemsofDifferentialEquations ..................... 318 6.4 SymmetricMatrices............................. 337 6.5 PositiveDe.niteMatrices.......................... 349 7 TheSingularValueDecomposition (SVD) 363
7.1 ImageProcessingbyLinearAlgebra .................... 363 7.2 BasesandMatricesintheSVD ....................... 370 7.3 Principal Component Analysis (PCA by the SVD) . . . . . . . . . . . . . 381
7.4 TheGeometryoftheSVD ......................... 391 8 LinearTransformations 400
8.1 TheIdeaofaLinearTransformation .................... 400 8.2 TheMatrixofaLinearTransformation. . . . . . . . . . . . . . . . . . . 410
8.3 TheSearchforaGoodBasis ........................ 420 9 ComplexVectorsand Matrices 429
9.1 ComplexNumbers ............................. 430 9.2 HermitianandUnitaryMatrices ...................... 437 9.3 TheFastFourierTransform......................... 444 10 Applications 451
10.1GraphsandNetworks ............................ 451 10.2MatricesinEngineering........................... 461 10.3 Markov Matrices, Population, and Economics . . . . . . . . . . . . . . . 473
10.4LinearProgramming ............................ 482 10.5 Fourier Series: Linear Algebra for Functions . . . . . . . . . . . . . . . . 489
10.6ComputerGraphics ............................. 495 10.7LinearAlgebraforCryptography...................... 501 11 NumericalLinear Algebra 507
11.1GaussianEliminationinPractice ...................... 507 11.2NormsandConditionNumbers....................... 517 11.3 IterativeMethodsandPreconditioners . . . . . . . . . . . . . . . . . . . 523
12LinearAlgebrain Probability& Statistics 534
12.1Mean,Variance,andProbability ...................... 534 12.2 Covariance Matrices and Joint Probabilities . . . . . . . . . . . . . . . . 545
12.3 Multivariate Gaussian and Weighted Least Squares . . . . . . . . . . . . 554
MatrixFactorizations 562
Index 564
SixGreatTheorems/LinearAlgebrain aNutshell 573
展开全部

作者简介

作者GILBERT STRANG为Massachusetts Institute of Technology数学系教授。从UCLA博士毕业后一直在MIT任教.教授的课程有“数据分析的矩阵方法”“线性代数”“计算机科学与工程”等,出版的图书有Linear Algebra and Learning from Data (NEW)、See math.mit.edu/learningfromdata、Introduction to Linear Algebra - Fifth Edition 、Contact linearalgebrabook@gmail.com、Complete List of Books and Articles、Differential Equations and Linear Algebra。

预估到手价 ×

预估到手价是按参与促销活动、以最优惠的购买方案计算出的价格(不含优惠券部分),仅供参考,未必等同于实际到手价。

确定
快速
导航