- ISBN:9787300300665
- 装帧:一般胶版纸
- 册数:暂无
- 重量:暂无
- 开本:其他
- 页数:216
- 出版时间:2022-03-01
- 条形码:9787300300665 ; 978-7-300-30066-5
内容简介
本书分为三部分。**部分通过对于商务数据分析概念、理论、应用和分析框架的介绍,帮助读者建立对商务数据的范畴和应用的初步认知。第二部分分类别介绍了商务数据分析的常见方法,包括数据获取与理解、数据预处理与特征工程、计量模型、数据挖掘模型、社会网络分析模型、可视化等。通过具体的商务数据分析示例的介绍和解析,帮助读者理解和学习这些方法的基本原理,以及此方法在数据分析整体框架中所起到的作用。第三部分基于商务实际数据,以案例的方式介绍了商务数据分析的常见应用,包括购买预测、销量预测、流失预测、客户细分、商品推荐等,并按照分析框架进行介绍,让读者不仅了解商务数据分析的具体应用,还加深了对于商务数据分析框架的认识。本教材适用于商业分析、数据科学、大数据技术、信息管理信息系统、电子商务、计算机应用等专业。
目录
**章 商务数据分析基本概念 / 3
**节 商务数据分析概述 / 3
1.数据类型 / 3
2.数据分析类型 / 4
3.数据分析方法 / 5
第二节 商务分析理论 / 6
1. 4P理论 / 6
2.用户画像 / 8
3.用户点击流分析 / 9
4.顾客价值 / 9
第三节 数据分析主要应用 / 10
1.市场营销 / 10
2.运营管理 / 11
3.产品研发 / 12
第二章 商务数据分析框架 / 13
1.问题明确 / 13
2.数据理解 / 13
3.数据预处理 / 14
4.模型建立 / 15
5.模型评价 / 19
6.模型发布 / 19
第二部分 商务数据分析常用方法
第三章 数据获取与数据理解 / 23
**节 数据获取 / 23
1.直接获取 / 23
2.间接获取 / 24
第二节 数据描述 / 25
1.集中趋势分析 / 26
2.离散程度分析 / 29
3.分布形状分析 / 31
习题 / 33
第四章数据预处理 / 34
**节数据预处理 / 34
1.数据预处理的目的 / 34
2.数据预处理的主要任务 / 34
3.数据清洗 / 35
4.数据集成 / 39
5.数据变换 / 40
6.数据规约 / 44
第二节特征工程 / 46
1.特征选择的目的 / 47
2.特征选择的过程 / 48
3.子集搜索 / 49
4.子集评价 / 51
5.特征选择的方法 / 51
习题 / 55
第五章计量模型 / 56
**节时间序列分析 / 56
1.时间序列分析简介 / 56
2.时间序列建模:平稳性检验 / 57
3.平稳时间序列常用模型:AR,MA与ARMA / 59
4.非平稳时间序列 / 62
第二节回归模型 / 66
1.回归模型评价标准 / 67
2.线性回归 / 69
3.非线性回归 / 71
4.回归模型和回归系数的显著性 / 72
5.多重共线性的检验 / 73
习题 / 75
第六章数据挖掘分类预测模型 / 76
**节分类模型评价标准 / 76
第二节逻辑回归 / 79
1.从线性回归到逻辑回归 / 79
2.逻辑回归的参数优化 / 80
3.逻辑回归小结 / 81
4.二分类算法应用于多分类问题 / 81
第三节决策树 / 82
1.信息熵 / 82
2.信息熵、不确定性与集合纯度 / 84
3.信息增益 / 85
4.常见的决策树算法 / 87
5.决策树的剪枝 / 89
6.决策树小结 / 89
第四节贝叶斯算法 / 90
1.贝叶斯概率 / 90
2.贝叶斯公式 / 90
3.朴素贝叶斯算法 / 92
4.非朴素贝叶斯算法 / 93
5.贝叶斯算法小结 / 94
第五节 k*近邻算法 / 94
1.基本k*近邻算法 / 94
2.k*近邻算法的三个基本要素 / 94
3.改进*近邻算法:kd树的构造 / 96
4.k*近邻算法小结 / 99
第六节支持向量机 / 99
1.SVM基本原理 / 99
2.软间隔 / 101
3.SVM中的核函数 / 102
4.SVM算法的特点 / 104
第七节人工神经网络 / 104
1.神经网络基本结构 / 105
2.神经元模型 / 106
3.BP神经网络 / 108
4.BP神经网络特点 / 110
第八节分类和预测算法扩展 / 111
1.数据不平衡问题 / 111
2.集成学习 / 112
习题 / 115
第七章数据挖掘聚类与关联规则模型 / 116
**节聚类 / 116
1.聚类概念 / 116
2.K-Means聚类 / 117
3.基于密度的聚类方法 / 120
4.层级凝聚聚类(HAC) / 121
5.聚类效果评价指标 / 122
第二节关联规则 / 124
1.关联规则的基本概念 / 124
2.关联规则常用评价标准 / 125
3.关联规则挖掘基础:频繁项集与强规则 / 126
4.关联规则挖掘算法Apriori / 126
5.关联规则挖掘算法FP-growth / 128
6.关联规则挖掘算法ECLAT / 131
7.关联规则的其他评价标准 / 133
习题 / 135
第八章社会网络分析模型 / 136
**节社会网络分析基本概念 / 136
1.基本结构 / 136
2.网络的表示 / 137
3.路径 / 137
4.距离 / 138
5.连通图与连通分量 / 139
6.割点、桥、结构洞 / 139
第二节社会网络的度量方法 / 140
1.网络规模和密度 / 140
2.中心性 / 141
第三节 社会网络的性质 / 147
1.同质性 / 148
2.三元闭包 / 148
3.强弱关系 / 149
4.平衡网络 / 149
5.网络级联 / 150
第四节 社会网络分析在商务问题中的应用 / 152
1.基于社区识别的推荐 / 152
2.病毒营销 / 153
3.基于商品网络的推荐 / 153
习题 / 154
第九章复杂数据分析方法 / 155
**节文本处理 / 155
1.文本预处理 / 155
2.文本特征提取 / 156
3.文本情感分析 / 160
第二节图像处理 / 162
1.颜色特征 / 162
2.纹理特征 / 163
3.形状特征 / 164
4.空间关系特征 / 164
5.关键特征 / 165
6.视觉词袋特征 / 165
7.SentiBank语义特征 / 166
8.其他特征 / 166
习题 / 167
第十章数据可视化 / 168
**节可视化的作用 / 168
第二节数据可视化的常用图表 / 168
1.适合单特征展示的图形 / 169
2.适合多个特征展示的图形 / 171
第三节用图形展示模型结果 / 173
1.模型结果展示 / 173
2.模型与变量间关系展示 / 174
3.模型间对比展示 / 175
第四节 常用的可视化工具 / 175
1. Excel / 175
2.语言代码内作图工具 / 175
3.界面化可视化工具 / 176
4.社会网络可视化工具 / 177
习题 / 177
第三部分商业应用
第十一章预测模型应用 / 181
**节 购买预测 / 181
1.问题描述 / 181
2.数据理解 / 181
3.数据预处理 / 182
4.模型建立 / 183
5.模型评价 / 183
6.案例小结 / 183
第二节 流失预测 / 184
1.问题描述 / 184
2.数据理解 / 184
3.数据预处理 / 184
4.模型建立 / 185
5.模型评价 / 185
6.案例小结 / 185
第三节 销量预测 / 185
1.问题描述 / 185
2.数据理解 / 186
3.数据预处理:数据清洗 / 186
4.数据预处理:特征工程 / 187
5.模型建立 / 188
6.模型评价 / 188
7.案例小结 / 189
第十二章 分类模型应用 / 191
**节 客户细分 / 191
1.问题描述 / 191
2.数据理解 / 191
3.数据预处理 / 192
4.模型建立 / 194
5.模型评价 / 195
6.案例小结 / 196
第十三章 推荐系统应用 / 197
1.问题描述 / 197
2.数据理解 / 197
3.模型建立 / 198
4.模型评价 / 199
5.案例小结 / 200
参考文献 / 201
作者简介
李倩,中国人民大学信息学院副教授。主要研究领域为商务数据分析、技术瘾、大数据分析与应用。主持和参与国家自然科学基金多个项目。许伟,中国人民大学信息学院教授,博士生导师。***青年人才,北京市科技新星,北京市优秀人才,中国人民大学杰出学者。中国人民大学信息学院经济信息管理系主任、信息系统与大数据应用实验室主任。主要研究领域为金融科技、商业分析、智慧城市、社交媒体。获得北京市哲学社会科学优秀成果奖等省部级以上奖励多项。张文平,中国人民大学信息学院副教授,主要研究领域包括复杂数据处理,大数据挖掘,商业分析,区块链技术应用,可解释AI。主持和参与国家自然科学基金多个项目。
-
内向者的沟通课
¥20.6¥42.0 -
富爸爸穷爸爸
¥31.2¥89.0 -
学理:像理科大师一样思考
¥28.2¥48.0 -
底层逻辑:看清这个世界的底牌
¥61.4¥69.0 -
畅销的原理:为什么好观念、好产品会一炮而红?(八品)
¥14.0¥45.0 -
以利为利:财政关系与地方政府行为
¥60.1¥78.0 -
投资人和你想的不一样
¥23.4¥65.0 -
文案高手
¥18.7¥36.0 -
麦肯锡高效工作法(八品)
¥19.2¥52.0 -
逆势突围
¥18.4¥68.0 -
麦肯锡底层领导力/(英)克劳迪奥·费泽,(英)迈克尔·伦尼,(英)尼古莱·陈·尼尔森
¥37.4¥68.0 -
麦肯锡逻辑思考法
¥32.8¥49.8 -
鹤老师说经济:揭开财富自由的底层逻辑
¥26.7¥65.0 -
学会提问
¥46.9¥69.0 -
事实
¥38.0¥69.0 -
领导学全书柯维领导培训中心
¥18.4¥68.0 -
沃顿商学院最受欢迎的谈判课
¥18.6¥69.0 -
央企真相
¥23.8¥58.0 -
故事力法则
¥15.4¥48.0 -
中美贸易战十评
¥2.2¥8.0