×
超值优惠券
¥50
100可用 有效期2天

全场图书通用(淘书团除外)

关闭
智能风控实践指南 从模型、特征到决策

智能风控实践指南 从模型、特征到决策

1星价 ¥55.7 (6.2折)
2星价¥55.7 定价¥89.9
暂无评论
图文详情
  • ISBN:9787115575975
  • 装帧:一般胶版纸
  • 册数:暂无
  • 重量:暂无
  • 开本:16开
  • 页数:240
  • 出版时间:2022-06-01
  • 条形码:9787115575975 ; 978-7-115-57597-5

本书特色

经验丰富的专家写作,融360大公司真实案例写作基础,基于Python,模型、特征、决策 3维度讲解智能风控实践,多种算法、可落地的案例代码以及解决方案,16位专家推荐 囊括了信贷风控的模型、特征和策略三大主要内容,相较于单一介绍某个部分的书籍更能揭示全流程风控中智能算法应用面貌; 以方法论紧密结合智能算法,再配合金融科技一线业务实践案例实现,相较于单独的算法介绍或者理论分析,更具有实操性; 以金融科技领域领先的智能风控算法应用作为标准,相较于传统信贷风控方法,更具有先进性; 以人工智能流行的Python语言实现书中的各类案例,更符合智能算法语言发展的趋势; 作者是业界深耕金融风控多年的融360团队写作,内容更专业和具有实战意义。

内容简介

随着人工智能技术的进步和消费金融行业的快速发展,智能风控已经成为金融行业的刚性需求。本书围绕智能风控的关键环节一一展开,同时结合具体的智能风控实例进行解析。 本书共6章,主要内容包括智能风控的发展,搭建智能风控模型体系,搭建风控特征画像体系,搭建智能风控策略体系,智能风控与人工的结合,以及智能风控管理。 本书适合银行、消费金融与保险等领域信贷风控模型开发人员、特征挖掘人员和策略分析人员,以及金融科技领域从业者、咨询行业从业者和其他对智能风控感兴趣的人阅读。

目录

第 1章 智能风控的发展/ 1
1.1 早期的风控技术/ 1
1.1.1 基于人工经验的风控/ 1
1.1.2 传统统计量化的风控/ 2
1.2 初识智能风控/ 2
1.2.1 智能风控的定义/ 3
1.2.2 智能风控的发展/ 3
1.2.3 与传统风控对比/ 4
1.3 智能风控主要应用/ 5
1.3.1 应用于营销环节/ 6
1.3.2 应用于贷前环节/ 6
1.3.3 应用于贷中环节/ 7
1.3.4 应用于贷后环节/ 8
1.4 本章小结/ 9
第 2章 搭建智能风控模型体系/ 10
2.1 模型概述/ 11
2.2 模型开发方法论——构建好样本/ 13
2.2.1 问题定义/ 14
2.2.2 样本的选择和划分/ 18
2.2.3 模型架构设计/ 20
2.2.4 数据准备和数据描述/ 21
2.2.5 数据预处理/ 24
2.3 模型开发方法论——构建好模型/ 33
2.3.1 特征选择/ 33
2.3.2 特征提取/ 44
2.3.3 模型训练、概率转化和效果评估/ 46
2.3.4 模型部署及上线验证/ 54
2.4 常用风控建模智能算法/ 56
2.4.1 基础学习算法/ 56
2.4.2 集成学习算法/ 65
2.4.3 深度学习算法/ 74
2.5 模型迭代优化/ 81
2.5.1 模型融合角度/ 82
2.5.2 建模时效角度/ 85
2.5.3 拒绝推断角度/ 86
2.6 风控模型体系搭建/ 92
2.6.1 营销阶段的模型/ 92
2.6.2 贷前阶段的模型/ 93
2.6.3 贷中阶段的模型/ 94
2.6.4 贷后阶段的模型/ 95
2.7 模型监控和异常处理/ 96
2.7.1 模型监控和预警/ 96
2.7.2 模型异常处理/ 100
2.8 本章小结/ 100
第 3章 搭建风控特征画像体系/ 102
3.1 特征挖掘概述/ 102
3.2 特征挖掘方法论/ 103
3.2.1 原始数据分析/ 103
3.2.2 数据清洗/ 104
3.2.3 中间数据集构建/ 109
3.2.4 特征的设计和生成/ 115
3.2.5 特征评估/ 124
3.2.6 特征上下线/ 126
3.3  特征挖掘智能算法/ 127
3.3.1 特征衍生/ 127
3.3.2 文本特征挖掘/ 132
3.3.3 图特征挖掘/ 142
3.4 风控特征画像体系的搭建/ 148
3.4.1 营销特征画像/ 148
3.4.2 贷前特征画像/ 149
3.4.3 贷中特征画像/ 153
3.4.4 贷后特征画像/ 155
3.5  特征监控和特征异常处理/ 155
3.5.1 特征监控/ 155
3.5.2 特征异常处理/ 156
3.6 本章小结/ 157
第 4章 搭建智能风控策略体系/ 158
4.1 风控策略概述/ 158
4.2 风控策略方法论/ 159
4.2.1 规则分析方法/ 159
4.2.2 模型策略分析方法/ 169
4.2.3 额度策略分析方法/ 178
4.2.4 A/B测试/ 183
4.3 风控策略智能算法/ 185
4.3.1 规则挖掘智能算法/ 185
4.3.2 决策优化智能算法/ 189
4.4 风控策略体系的搭建/ 195
4.4.1 营销策略/ 195
4.4.2 贷前策略/ 196
4.4.3 贷中策略/ 201
4.4.4 贷后策略/ 202
4.5 风控策略的监控、预警和异常处置/ 203
4.5.1 风控策略的监控与预警/ 203
4.5.2 风控策略异常处置/ 207
4.6 本章小结/ 208
第 5章 智能风控与人工的结合/ 209
5.1 机器学习的局限性/ 209
5.1.1 数据不足/ 209
5.1.2 可解释性低/ 210
5.1.3 因果难区分/ 210
5.1.4 模型自身的风险/ 212
5.2 发挥人的价值/ 212
5.2.1 异常识别/ 212
5.2.2 案例研究/ 213
5.2.3 黑产对抗/ 213
5.3 决策方案的选择/ 214
5.3.1 完全智能决策/ 214
5.3.2 部分智能决策/ 215
5.4 本章小结/ 216
第 6章 智能风控管理/ 217
6.1 建立持续复盘机制/ 217
6.2 制订风险预防和应对措施/ 218
6.3 制订存档管理措施/ 218
6.4 建立透明的沟通渠道/ 219
6.5 建立工作体系标准/ 220
6.6 应用团队协作工具/ 220
6.7 本章小结/ 222
参考文献/ 223
展开全部

作者简介

蒋宏,资深模型算法工程师,超过10年风控和模型算法经验,对信贷风控领域包括欺诈风险、信用风险、*优化决策有深入研究,对数据挖掘、机器学习有深入洞察和实践经验,拥有多项模型算法相关专利,具备丰富的风控模型团队管理经验,曾任职德勤信息技术咨询顾问、百融风控模型团队副总监。

预估到手价 ×

预估到手价是按参与促销活动、以最优惠的购买方案计算出的价格(不含优惠券部分),仅供参考,未必等同于实际到手价。

确定
快速
导航