- ISBN:9787518992249
- 装帧:一般胶版纸
- 册数:暂无
- 重量:暂无
- 开本:其他
- 页数:204
- 出版时间:2023-03-01
- 条形码:9787518992249 ; 978-7-5189-9224-9
内容简介
网络消费者行为研究是以挖掘消费者需求为核心,进行新产品设计与开发、智能营销以及个性化推荐的前沿课题。本书是在全面梳理网络消费者产品搜寻、浏览与评价行为的基础上,实施用户画像建模与个性化推荐的经验总结,内容包括:(1)大数据时代推荐系统面临的机遇与挑战;(2)现有推荐系统研究的回顾与总结;(3)面向长尾产品的消费者观点态度挖掘;(4)基于消费者评价行为的推荐机制;(5)网络消费者搜索行为建模;(6)基于消费者查询行为的个性化推荐机制;(7)新零售背景下未来智能推荐系统的几种选择路径。
目录
1 大数据时代搜索技术面临的挑战
1.1 研究背景
1.2 研究问题与意义
1.3 研究内容与技术路线
2 个性化搜索的研究动态
2.1 在线评论的有用性研究
2.2 基于评论数据的搜索结果研究
2.3 搜索结果多样性相关研究
2.4 研究评述
3 面向长尾产品的特征-观点挖掘模型
3.1 问题描述
3.2 面向长尾产品的特征-观点挖掘模型构建
3.3 实验结果分析
3.4 本章小结
4 基于产品评价特征的多样化搜索结果识别研究
4.1 问题描述
4.2 预备知识
4.3 混合数据的统一相似性度量问题研究
4.4 多样化搜索结果识别算法构建
4.5 实验结果分析
4.6 本章小结
5 基于消费者动态偏好的多样化搜索结果识别研究
5.1 问题描述
5.2 消费者动态偏好分析模型构建
5.3 搜索结果*大相关-多样性问题研究
5.4 实验结果分析
5.5 本章小结
6 基于消费者在线查询的产品推荐问题研究
6.1 问题描述
6.2 基于在线查询的推荐框架构建
6.3 实验结果分析
6.4 本章小结
7 新零售背景下全渠道推荐机制研究的机遇与挑战
7.1 新零售背景下全渠道推荐机制研究的意义
7.2 全渠道推荐机制研究梳理
7.3 现有研究的不足与未来的研究方向
8 结论与展望
8.1 研究结论
8.2 研究展望
参考文献
作者简介
黄鑫,2020年毕业于西安交通大学,获得管理学博士学位,现为北京师范大学信息管理系讲师。目前主要研究方向为结合运筹优化与机器学习的智能决策分析,社会科学中机器学习方法的应用。现主持 自然科学基金青年项目“消费者行为数据驱动的新零售企业 线下融合的 机制研究”1项。在《Knowledge-Based Systems》、《IEEE Transactions on Engineering Management》、《Computers & Industrial Engineering》等 知名期刊上发表论文多篇,在企业集成信息系统 大会IFIP CONFENIS、COMPUTERS AND INDUSTRIAL ENGINEERING等高水平 会议上发表多篇学术论文。
-
内向者的沟通课
¥20.6¥42.0 -
学理:像理科大师一样思考
¥24.5¥48.0 -
富爸爸穷爸爸
¥46.1¥89.0 -
底层逻辑:看清这个世界的底牌
¥32.4¥69.0 -
影响力
¥34.4¥79.9 -
畅销的原理:为什么好观念、好产品会一炮而红?(八品)
¥13.5¥45.0 -
投资人和你想的不一样
¥20.8¥65.0 -
麦肯锡高效工作法(八品)
¥15.6¥52.0 -
文案高手
¥15.5¥36.0 -
事实
¥42.1¥69.0 -
李诞脱口秀工作手册
¥16.0¥42.0 -
逆势突围
¥18.4¥68.0 -
鹤老师说经济:揭开财富自由的底层逻辑
¥22.1¥65.0 -
麦肯锡逻辑思考法
¥28.5¥49.8 -
沃顿商学院最受欢迎的谈判课
¥18.6¥69.0 -
费曼学习法(用输出倒逼输入)
¥16.2¥45.0 -
中国的银行
¥6.0¥17.0 -
麦肯锡底层领导力/(英)克劳迪奥·费泽,(英)迈克尔·伦尼,(英)尼古莱·陈·尼尔森
¥23.1¥68.0 -
故事力法则
¥14.4¥48.0 -
领导学全书柯维领导培训中心
¥18.4¥68.0