- ISBN:9787510058424
- 装帧:一般胶版纸
- 册数:暂无
- 重量:暂无
- 开本:16开
- 页数:320
- 出版时间:2013-07-01
- 条形码:9787510058424 ; 978-7-5100-5842-4
本书特色
《成像中的变分法(英文)》由世界图书出版公司北京公司出版。
内容简介
Imagmg is an interdisciplinary research area with profound applications in many areas of science, engineering, technology, and medicine. The most primitrve form of imaging is visual in,spection, which has dominated the area before the technical and computer revolution era. Today, computer imaging covers various aspects of data tiltering, pattern recognition, feature extraction., co'mputer aided mspection, and medical diagnosis. The above mentioned areas are treated in different scientific communities such as Imagin,g, In,verse Problems, Computer Vision, Signal and Image Processing,…, but all share the common thread of recovery of an object or one of its properties.
目录
1 Case Examples of Imaging
1.1 Denoising
1.2 Chopping and Nodding
1.3 Image Inpainting
1.4 X-ray-Based Computerized Tomography
1.5 Thermoacoustic Computerzed Tomography
1.6 Schlieren Tomography
2 Image and Noise Models
2.1 Basic Concepts of Statistics
2.2 Digitzed (Discrete) Images
2.3 Noise Models
2.4 Priors for Images
2.5 Maximum A Posteriori Estimation
2.6 MAP Rstimation for Noisy Images
Part I Fundamentals of Imagmg
1 Case Examples of Imaging
1.1 Denoising
1.2 Chopping and Nodding
1.3 Image Inpainting
1.4 X-ray-Based Computerized Tomography
1.5 Thermoacoustic Computerzed Tomography
1.6 Schlieren Tomography
2 Image and Noise Models
2.1 Basic Concepts of Statistics
2.2 Digitzed (Discrete) Images
2.3 Noise Models
2.4 Priors for Images
2.5 Maximum A Posteriori Estimation
2.6 MAP Rstimation for Noisy Images
Part II Regularization
3 Variational R,egularzation Methods for the Solution of Inverse Problems
3.1 Quadratic Tikhonov R;egularization in Hilbert Spaces
3.2 Variational R,egularization Methods in Banach Spaces
3.3 Regularization with Sparsity Constraints
3.4 Linear Inverse Problems with Convex Constraints
3.5 Schlieren Tomography.
3.6 Further Literature on Regularization Methods for Inverse Problems
4 Convex Regularization Methods for Denoising
4.1 The Number
4.2 Characterization of Minimizers
4.3 One-dimensional Results
4.4 Taut String Algorithm
4.5 Mumford-Shah Regularization
4.6 Recent Topics on Denoising with Variational Methods
5 Variational Calculus for Non-convex R,egularization
5.1 Direct Methods
5.2 Relaxation on Sobolev Spaces
5.3 Relaxation on BV
5.4 Applications in Non-convex Regularization
5.5 One-dimensional Results
5.6 Examples
6 Serru-group Theory and Scale Spaces
6.1 Linear Semi-group Theory
6.2 Non-linear Semi-groups in Hilbert Spaces
6.3 Non-Iinear Semi-groups in Banach Spaces
6.4 Axiomatic Approach to Scale Spaces
6.5 Evolution by Non-convex Energy Functionals
6.6 Enhancing
7 Inverse Scale Spaces
7.1 Iterative Tikhonov Regularization
7.2 Iterative Regularization with Bregman Distances
7.3Recent Topics on Evolutionary Equations for Inverse Problems
Part III Mathematical Foundations
8 Functional Analysis
8.1 General Topology
8.2 Locally Convex Spaces
8.3 Bounded Linear Operators and Functionals
8.4 Linear Operators in Hilbert Spaces
8.5 Weak and Weak Topologies
8.6 Spaces of Differentiable Functions
9 Weakly Differentiable Functions
9.1 Measure and Integration Theory
9.2 Distributions and Distributional Derivatives
9.3 Geometrical Properties of Functions and Domains
9.4 Sobolev Spaces
10 Convex Analysis and Calculus of Variations
References
Nomenclature
Index
节选
《成像中的变分法(英文)》由世界图书出版公司北京公司出版。
作者简介
Otmar Scherzer,Markus Grasmair, Harald Grossauer,Markus Haltmeier, Frank Lenzen是国际知名学者,在数学和物理学界享有盛誉。本书凝聚了作者多年科研和教学成果,适用于科研工作者、高校教师和研究生。
-
造就适者——DNA和进化的有力证据
¥17.5¥55.0 -
昆虫的生存之道
¥12.4¥38.0 -
世纪幽灵-走近量子纠缠
¥9.4¥28.0 -
声音简史
¥25.5¥52.0 -
13次时空穿梭之旅
¥18.7¥59.0 -
古文诗词中的地球与环境事件
¥9.4¥28.0 -
巧工创物〈考工记〉白话图解
¥9.7¥22.8 -
科学之死:20世纪科学哲学思想简史
¥19.5¥50.0 -
舟山群岛植物图志
¥16.9¥59.0 -
数学的魅力;初等数学概念演绎
¥9.4¥22.0 -
现代物理学的概念和理论
¥19.4¥68.0 -
刘薰宇的数学三书:原来数学可以这样学全3册
¥35.2¥118.0 -
递归求解
¥10.0¥28.0 -
成语与地理科学
¥10.6¥30.0 -
博物人生-(第2版)
¥29.1¥78.0 -
星空探奇
¥12.7¥39.0 -
通俗天文学(九品)
¥16.4¥48.0 -
现代科技中的天文学
¥5.5¥13.0 -
化学晚会
¥7.0¥20.0 -
怎样解题
¥17.8¥29.0