×
高等数学同步精讲

高等数学同步精讲

1星价 ¥16.2 (3.6折)
2星价¥16.2 定价¥45.0

温馨提示:5折以下图书主要为出版社尾货,大部分为全新(有塑封/无塑封),个别图书品相8-9成新、切口有划线标记、光盘等附件不全详细品相说明>>

暂无评论
图文详情
  • ISBN:9787533163310
  • 装帧:一般胶版纸
  • 册数:暂无
  • 重量:暂无
  • 开本:16开
  • 页数:480
  • 出版时间:2014-10-01
  • 条形码:9787533163310 ; 978-7-5331-6331-0

内容简介

  《高等数学同步精讲》汇集了编者几十年的丰富经验,将一些典型例题及解题方法与技巧融人书中,《高等数学同步精讲》将会成为读者学习《高等数学》的良师益友。《高等数学同步精讲》章节的划分和内容设置与同济大学的《高等数学》(第六版)完全一致。每节内容由三部分组成:一、主要内容归纳;二、经典例题解析及解题方法总结;三、教材习题解答。每章*后还有两部分内容:总习题解答及自测题与参考答案。

目录

**章 函数与极限
**节 映射与函数
第二节 数列的极限
第三节 函数极限
第四节 无穷小与无穷大
第五节 极限运算法则
第六节 极限存在准则 两个重要极限
第七节 无穷小的比较
第八节 函数的连续性与间断点
第九节 连续函数的运算与初等函数的连续性
第十节 闭区间上连续函数的性质
**章自测题

第二章 导数与微分
**节 导数概念
第二节 函数的求导法则
第三节 高阶导数
第四节 隐函数及由参数方程确定的函数的导数,相关变化率
第五节 函数的微分
第二章自测题

第三章 微分中值定理与导数的应用
**节 微分中值定理
第二节 洛必达法则
第三节 泰勒公式
第四节 函数的单调性与曲线的凹凸性
第五节 函数的极值与*大值、*小值
第六节 函数图形的描绘
第七节 曲率
第八节 方程的近似解
第三章自测题

第四章 不定积分
**节 不定积分的概念与性质
第二节 换元积分法
第三节 分部积分法
第四节 有理函数的积分
第五节 积分表的使用
第四章自测题

第五章 定积分
**节 定积分的概念与性质
第二节 微积分基本公式
第三节 定积分的换元法和分部积分法
第四节 反常积分
第五节 反常积分的审敛法 厂函数
第五章自测题

第六章 定积分的应用
**节 定积分的元素法
第二节 定积分在几何上的应用
第三节 定积分在物理上的应用
第六章自测题

第七章 微分方程
**节 微分方程的基本概念
第二节 可分离变量的微分方程
第三节 齐次方程
第四节 一阶线性微分方程
第五节 可降阶的高阶微分方程
第六节 高阶线性微分方程
第七节 常系数齐次线性微分方程
第八节 常系数非齐次线性微分方程
第九节 欧拉方程
第十节 常系数线性方程组解法举例
第七章自测题

第八章 空间解析几何与向量代数
**节 向量及其线性运算
第二节 数量积 向量积 混合积
第三节 曲面及其方程
第四节 空间曲线及其方程
第五节 平面及其方程
第六节 空间直线及其方程
第八章自测题

第九章 多元函数微分法及其应用
**节 多元函数的基本概念
第二节 偏导数
第三节 全微分
第四节 多元复合函数的求导法则
第五节 隐函数的求导公式
第六节 多元函数微分法的几何应用
第七节 方向导数与梯度
第八节 多元函数的极值及其求法
第九节 二元函数的泰勒公式
第十节 *小二乘法
第九章自测题

第十章 重积分
**节 二重积分的概念与性质
第二节 二重积分的计算法
第三节 三重积分
第四节 重积分的应用
第五节 含参变量的积分
第十章自测题

第十一章 曲线积分与曲面积分
**节 对弧长的曲线积分
第二节 对坐标的曲线积分
第三节 格林公式及其应用
第四节 对面积的曲面积分
第五节 对坐标的曲面积分
第六节 高斯公式 通量与散度
第七节 斯托克斯公式 环流量与旋度
第十一章自测题

第十二章 无穷级数
**节 常数项级数的概念和性质
第二节 常数项级数的审敛法
第三节 幂级数
第四节 函数展开成幂级数
第五节 函数的幂级数展开式的应用
第六节 函数项级数的一致收敛性及一致收敛级数的基本性质
第七节 傅里叶级数
第八节 一般周期函数的傅里叶级数
第十二章自测题
展开全部

预估到手价 ×

预估到手价是按参与促销活动、以最优惠的购买方案计算出的价格(不含优惠券部分),仅供参考,未必等同于实际到手价。

确定
快速
导航