×
超值优惠券
¥50
100可用 有效期2天

全场图书通用(淘书团除外)

关闭
暂无评论
图文详情
  • ISBN:9787030367921
  • 装帧:暂无
  • 册数:暂无
  • 重量:暂无
  • 开本:24cm
  • 页数:208
  • 出版时间:2013-03-01
  • 条形码:9787030367921 ; 978-7-03-036792-1

内容简介

《抽象代数I —— 代数学基础》内容包括基本概念、环、域、群、模和Galois理论六部分。本书给出《抽象代数I —— 代数学基础》习题的全部解答, 也给出在教学中积累的许多重要、有趣的题目的解答。有的题目给出多种解答, 有的题目给出一些注解。

目录

前言
第1章 基本概念
1.1 二元运算与同余关系
1.2 幺半群群
1.3 子群与商群
1.4 环与域
1.5 同态与同构
1.6 模
1.7 同态基本定理
1.8 循环群
第2章 环
2.1 分式域
2.2 多项式环
2.3 对称多项式
2.4 唯一析因环
2.5 主理想整环与Euclid环
2.6 域上一元多项式
2.7 唯一析因环的多项式环
2.8 素理想与极大理想
第3章 域
3.1 域的单扩张
3.2 有限扩张
3.3 分裂域正规扩张
3.4 可分多项式完备域
3.5 可分扩张本原元素
3.6 代数学基本定理
第4章 群
4.1 群的生成组
4.2 群在集合上的作用
4.3 Sylow子群
4.4 有限单群
4.5 群的直积
4.6 可解群与幂零群
4.7 Jordan-Holder定理
4.8 自由幺半群与自由群
4.9 点群
第5章 模
5.1 自由模
5.2 模的直和
5.3 主理想整环上的有限生成模
5.4 主理想整环上的有限生成扭模
5.5 主理想整环上有限生成模的应用
5.6 主理想整环上的矩阵
第6章 Galois理论
6.1 Galois基本理论
6.2 一个方程的群
6.3 分圆域二项方程
6.4 有限域
6.5 方程的根式解
6.6 圆规直尺作图
展开全部

预估到手价 ×

预估到手价是按参与促销活动、以最优惠的购买方案计算出的价格(不含优惠券部分),仅供参考,未必等同于实际到手价。

确定
快速
导航